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Tactile sensing based on fingertip suction flow
for submerged dexterous manipulation

Philippe Nadeau, Michael Abbott, Dominic Melville and Hannah S. Stuart*

Abstract—The ocean is a harsh and unstructured environ-
ment for robotic systems; high ambient pressures, saltwater
corrosion and low-light conditions demand machines with
robust electrical and mechanical parts that are able to sense and
respond to the environment. Prior work shows that the addition
of gentle suction flow to the hands of underwater robots can aid
in the handling of objects during mobile manipulation tasks.
The current paper explores using this suction flow mechanism
as a new modality for tactile sensing; by monitoring orifice
occlusion we can get a sense of how objects make contact
in the hand. The electronics required for this sensor can be
located remotely from the hand and the signal is insensitive to
large changes in ambient pressure associated with diving depth.
In this study, suction is applied to the fingertips of a two-
fingered compliant gripper and suction-based tactile sensing
is monitored while an object is pulled out of a pinch grasp.
As a proof of concept, a recurrent neural network model was
trained to predict external force trends using only the suction
signals. This tactile sensing modality holds the potential to
enable automated robotic behaviors or to provide operators
of remotely operated vehicles with additional feedback in a
robust fashion suitable for ocean deployment.

I. INTRODUCTION

Hands capable of performing grasping and manipulation
underwater can enable robotic platforms to better address
challenging field applications, such as ocean exploration
[1]. A sense of touch, via tactile sensors, supports the
implementation of autonomous grasp reflexes, manipulation
primitives, physical probing of the environment and haptic
feedback to teleoperators. Sensing physical interaction forces
is especially useful in the ocean, where vision is easily
diminished by darkness or silty waters and objects may be
fragile. For example, France’s Department of Underwater and
Submarine Archaeological Research asserts that this sense of
touch will be “the key feature of future handling devices” [2].

The ocean is a harsh, unstructured environment for robotic
systems. Mechanical compliance is a useful way to create ro-
bust grippers for highly unstructured environments, described
in a number of reviews, chapters and research articles such
as [3]-[6] which detail a variety of underactuated and soft
designs. The contact-rich nature of these compliant hands
means that their behavior is susceptible to subtle changes in
contact conditions; these conditions can be measured directly
by tactile sensors in the skin. Yet, the inclusion of tactile
sensors into compliant hands is a challenge due to practical
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Fig. 1. The addition of suction flow can improve underwater grasping.
Pumps and sensitive measurement electronics can be incorporated remotely
to the hand, proximal to the arm (left, photo credit: Frederic Osada and
Teddy Sequin, DRASSM/Stanford University). The flow rate drawn through
the orifice changes with contact orientation, as the fingertip rolls or slips
across a smooth flat plate (right).

limitations — there is finite space in the fingers for embedding
electrical components and wires get fatigued as the fingers
flex repetitively.

In this work, we introduce a new method of tactile sensing
using gentle suction flow at the fingertips of a compliant
hand, as in Fig. 1, that is convenient to incorporate into
underwater robots. One main benefit of this solution is that
pumps and sensitive electronics can be located remotely from
the hand, protected on the robotic base proximal to the arms.

Section II reviews the state of the art of hands and tactile
sensing for marine operations, including the use of suction
flow to improve grasping under water. The design of the
suction flow tactile sensor is described in Section III, with
special attention given to the flow rate measurement system
and the compliance and shape of the skin at the fingertips of
the hand. Suction flow tactile sensing produces a meaningful
yet complex signal. As a proof-of-concept, we use data-
driven machine learning methods to process data from a
set of grasping experiments during a pipe handling scenario,
described in Section IV. The results presented in Section V
show that suction flow tactile sensing is capable of providing
an estimate of the grasp pullout force trends, which may
have importance for certain manipulation tasks as discussed


Hannah Stuart
Typewritten Text
Accepted article. International Conference on Robotics and Automation.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



in Section VI. We conclude in Section VII with future steps.
II. RELATED WORK
A. Hands for Ocean Operation

A number of robotic hands and grippers are specialized for
marine applications, including [7]-[11]. Solutions range from
rigid claw-type designs produced for industry, e.g., [12], to
extremely gentle and compliant hands, e.g., for grasping onto
jellyfish [13]. Suction cups are sometimes utilized in gripping
underwater, e.g., tagging marine mammals [14] or handling
archaeological artifacts [15]. Previous research published
in [16] shows that gentle suction flow at the fingertips of
an underwater, multifinger hand enhances the reliability of
grasping and holding a variety of objects through increased
attractive forces and coefficients of friction, even when a
suction seal is not completely achieved.

B. Tactile Sensing Underwater

In the ocean, tactile sensors must withstand large varia-
tions in ambient pressure associated with changes in depth
and rough wear typical of unpredictable environments. There
is a rich literature regarding the design of tactile sensors
for robot manipulation summarized in reviews, e.g., [17],
[18], and chapters, e.g., [19]. Groups that directly address
large changes in hydrostatic pressure for subsea operation use
dynamic sensors (e.g. PVDF film) [20], bulk-incompressible
soft materials [21], [22], fluid-filled pressure-compensated
cavities [23], or measure structural strain [24].

Suction flow was first mentioned as a potential means of
measuring contact engagement in the discussion section of
[25]. This tactile sensing modality does not require electron-
ics to be included directly on the hand because flow can be
measured anywhere along suction tube lines. Stuart et. al.
observed that fingertip suction flow rate is a complex signal
that varies with the details of the finger, object and manipu-
lation behavior. To the authors’ knowledge, the current work
is the first demonstration of fingertip suction flow as a tactile
sensor applied to submerged robotic manipulation.

C. Other sensitive fluid-flow systems

There are works which incorporate suction onto multifin-
ger hands for operation in air, such as [26], [27]. Several
warehouse robots have successfully used suction as an ac-
tuation mechanism in addition to a gripper to pick porous
or smaller items, such as those developed for the Amazon
Robotics Challenge (ARC) [28], [29]. The winning team
of ARC’s 2017 edition also incorporated suction sensing
with the inclusion of a pressure switch that allowed them
to detect when the vacuum seal was made or broken [29].
Other robotic systems, like wall-climbing robots equipped
with suction cups, use pressure sensing for feedback when
attaching and dettaching a vacuum foot [30], [31]. These
applications typically treat suction pressure or flow as a
binary engagement signal. Submersion in a denser and more
viscous fluid — e.g., water — reduces the sensitivity of suction
flow rate on sealing effects at the contact. Thus, contact
suction flow rate is a more suitable analog signal under water
compared with in-air applications.

III. IMPLEMENTATION
A. Suction flow monitoring

Flow sensing is implemented using a pressure gradient
technique imposed by a flow resistor. A Venturi tube (entry
diameter = 10 mm, throat diameter = 6 mm) is placed at the
outlet of a centrifugal pump, shown in Fig. 2, and produces
a pressure difference based on flow rate through the tube.
One benefit of using a differential pressure transducer in this
tactile sensor is that flow readings will be independent to
changes in ambient pressure.

The relationship between pressure and flow rate in the
Venturi tube can be expressed by the equation Q = v/CP,
where () is the flow rate measured in m3/s, P is the
differential pressure P; — P, measured in Pa, and C is a
constant determined by the Venturi tube diameters and fluid
density. Given our parameters, C' ~ 1.84 - 10~!2 m"kg .
A differential pressure transducer (MPXV7025DP) measures
the pressure drop between the entry and throat portions of
the Venturi tube with a sensitivity of 90 mV/kPa. Due to
the overall nonlinear relationship between pressure and flow
rate, however, flow sensitivity ranges from 8.17 mV/LPM
at the no-flow condition to 350 mV/LPM at pressure trans-
ducer saturation. The submerged centrifugal BLDC pumps
(DC40-2470) used in this paper produce a maximum of 3.4
LPM when connected to the suction tubes and Venturi flow
resistors in the complete system.

B. Considerations for integration with a hand

The unique sensitivities of contact suction flow tactile
sensing influence its application to a hand. In this work, the
hand mechanism, shown in Fig.3(a), is comprised of two
independently actuated fingers placed in opposition to enable
pinch grasps. The design of the fingers is largely drawn from
those used in the Ocean One hands, which are discussed in-
depth in [8]. The fingers have three phalanges connected by
soft flexures. Each finger is driven by a single tendon, and
stainless steel springs across each joint act to maintain tendon
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Fig. 2. Inset diagram of suction flow sensing hardware. A centrifugal pump
pulls fluid through a suction orifice in the fingertip and pushes the fluid
out through a Venturi tube flow sensor. A differential pressure transducer
measures AP and outputs a DC voltage signal based on the pressure drop
and related flow rate through the tube. The plotted raw suction flow signal,
taken during a single clogging and unclogging sequence, is amplified and
digitized (blue) and then filtered (black) before being used in later analysis.
The suction engagement is expressed in terms of percentage where 0%
means that there is no suction engagement with an object (i.e. maximum
flow rate) while 100% means that the suction orifice is fully clogged (i.e.
no flow).
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Fig. 3. (a) The hand in this work is made up of two independently actuated
fingers. The suction lines are routed above the hand via a tube suspension
spring to reduce the influence of tube flexing on finger motion. (b) Close-up
image of fingertip shows key elements: a cylindrical test object (PVC tube),
finger joint mechanism, compliant foam skin, orifice location and suction
tube directing fluid towards the flow sensor.
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Fig. 4. The sensitivity of the suction flow sensor with respect to contact
angle 6 for two different fingertip geometries. A round tip design produces
a more gradual response than with a flat tip design.

tension and define curing behavior throughout the travel
of the finger. Suction orifices are located at the fingertips
because (1) suction can meaningfully improve the strength
of a pinch grasp and (2) even objects held in a wrap grasp
are likely to interact with the fingertips if they are pulled
out of the hand to grasp failure. Arrays of smaller suction
orifices could be installed across the entire hand, providing
more spatial resolution or area of detection. It should be
noted that coupling multiple orifices to a single flow sensor
will reduce the magnitude of contact measurand signal on
any single orifice. This is why, in this work, a dedicated
pump is applied to each individual suction orifice.

The suction flow rate is sensitive to small gaps between
the orifice and object surface, with distances up to ~1 mm
[16]. Details of fingertip geometry can alter the response of
the sensor with respect to contact angle. An initial experi-
ment compares two rigid fingertip profiles as contact angle
changes, the results of which are shown in Fig. 4. A contact
point further away from the orifice (i.e. towards the distal
edge of the phalanx) produces a larger change in distance
for a given contact angle. Similarly, rounded portions near
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Fig. 5. Two opposed fingers pinch rubber or plastic objects of varying
compliance. Suction engagement is maintained for considerably longer for
the softer rubber (Shore O030) than the hard plastic (Shore A40).

the orifice result in a more gradual response. As we wish to
evaluate this sensor over a wide range of contact angles, a
rounded fingertip geometry was selected for all experiments
in this work, shown in Fig. 3(b).

Contact compliance also improves suction engagement
over a wider range of contact angles. A soft skin will act
like a gasket, while a rigid fingertip will exhibit a sharper
flow response to variations in orifice misalignment with the
object. This idea is demonstrated in Fig. 5, while palpating
rubber blocks using the 2-finger hand; the most compliant
object produces the most suction engagement throughout
the manipulation, while the most rigid object does not
completely clog either fingertip orifice. In order to achieve
repeatable results during the experiments described in Sec.
IV while handling rigid objects, a foam skin was placed over
the fingertip pad. The soft skin is comprised of one layer of
double-sided urethane foam tape and an outer layer of 1/16”
closed-cell polyethylene foam, pictured in Fig. 3(b). A hole
in the foam and tape layers allows for unobstructed fluid flow
through the suction orifice.

In the current experimental implementation, the weight
and flexing of the suction line impacts the motion of the
finger. Deviation of the tubing out of the plane of finger
motion causes the compliant joints to twist. Because the
suction flow sensor is highly sensitive to contact angle, this
misalignment of the fingertip alters the suction engagement
during grasping. As seen in Fig. 3(a), a tube suspension
spring system is used to limit this effect. Careful and con-
sistent integration of the suction lines is especially important
for using this modality as a tactile sensor in soft robot hands.
Also, the aspiration of dirt or other matter is a concern
with suction flow as clogging events could lead to detection
of false-positive manipulation events. Disabling or reversing
the flow could be used to mitigate this issue, and will be
examined in future work.
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Fig. 6. Schematic diagram of experimental setup for grasping trials. The
hand is moved upward by a UR-10 robot arm while a Robotiq FT-300
force-torque sensor measures forces at the wrist. The studied object is held
down by an anchored string or extension spring. The chosen location of the
pumps and the position of the suction lines reduces deviation of the tubing
out of the plane of finger motion but can be changed as long they do not
impede finger movement.
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the Robot Operating System (ROS) and allowed an important level of
automation in the data collection process.

IV. EXPERIMENTAL METHODS

In order to characterize the utility of the suction flow
sensor for robotic handling, a series of grasp trials were
performed to test the sensor in underwater conditions.

A. Experimental setup

A diagram of the underwater test setup is shown in
Fig. 6. The grasping trials took place in a 70 L water
tank filled with enough water such that the fingers were
submerged throughout the grasping experiments. The robotic
hand described in Sec. III was attached to a Universal Robots
URI10 robotic arm to facilitate hand motions. Water was
pulled through orifices in the fingertips, through a set of
tubes, and out through the Venturi tubes. A set of objects
for grasping trials are placed in the tank; a small piece of
foam inside each object makes it approximately neutrally
buoyant. Two suction cups at the bottom of the water tank
anchor the object in the grasping plane and extension springs
attached to the test object and the suction cups prevent the
object from getting pulled completely out of the tank during
grasping trials. The Robot Operating System (ROS) was used
to automate the experimental processes as shown in Fig. 7. A
Robotiq FT-300 force and torque sensor measured the loads
acting on the hand mechanism during the experimental trials.
Data regarding gripper depth, suction engagement level, and

8 8 X

H o
X400 > Cells > Cells [—>@~ = e
Inputs LSTM LSTM Dense Output

Fig. 8. Architecture of the standard LSTM-based neural network.

forces acting on the hand mechanism were logged at a rate
of 70 Hz.

B. Experimental procedure

For each trial, the hand was lowered down to a constant
depth, and the fingers were closed around the test object
until the suction engagement level at the fingertips was
above a given threshold, measured by the suction flow
tactile sensor. The gripper was then raised several centimeters
vertically upward, extending a spring attached to the test
object, eventually causing the object to be pulled out of the
hand. Two modes of operation were used when pulling on
the object: (1) raising the object at a continuous speed and
(2) raising the object through a series or short upward arm
movements. After grasp failure, the gripper was then lowered
back to its initial state for further trials.

Two PVC tubes with diameters of 4 and 6 inches were
used as test objects, specifically selected because the grip
on larger objects is more reliant upon suction forces [16].
A total of 80 independent experimental grasping trials were
performed, 60 of which were conducted using the 6 in.
diameter pipe and 20 were conducted using the 4 in. diameter
pipe. The trials using the large tube were done in a smooth
vertical motion while the trials with the smaller pipe were
executed in discontinuous motions. The trials were equally
divided into five initial levels of suction engagement (20%,
30%, 40%, 50% and 60%) across all modes and object sizes.

C. Predictive model generation

In order to investigate whether the signals from the flow
sensors could be a useful predictor of the pullout force
of a grasp, a recurrent neural network (RNN) was used,
whose architecture is summarized in Fig. 8. This algorithm
has shown a high level of performance for highly volatile
time-series prediction tasks where it outperformed autore-
gressive integrated moving average (ARIMA) and Support
Vector Machine Regression (SVR) algorithms by a signifi-
cant margin [32] [33]. The Keras [34] and Tensorflow [35]
frameworks were used to train the RNN with a truncated
back-propagation through time. A sliding window of five
time steps was used to predict the next value of the output
by using standard long short-term memory (LSTM) layers.
The input was then fed to a sequential stack made of a first
LSTM layer of eight memory cells followed by a second
similar layer and finally followed by a densely-connected
layer. A manual hyper-parameters search was conducted on
the validation set, and the mean squared error metric was
used with the Adam [36] optimizer.

The RNN model was trained using only the smooth/large
dataset, using suction data alone as an input. The training and
validation sets were comprised of 47% and 12% respectively
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Fig. 10. A typical evolution of the vertical force (black) and of the suction
engagement (blue). Initially (a), no vertical force is exerted and the suction
is moderately engaged and constant. As the robot arm pulls the object,
the measured force is increased (b) but the suction engagement remains
relatively unchanged. Both the force and the engagement then grow up
to their respective maximum before reaching a point where they decrease
rapidly (c).

TABLE I
SUMMARY OF TRIALS

Mode Smooth Discontinuous
Object Large (26 in.) | Small (24 in.)
Qty. of trials 60 20

Max. Force Mean 1.82 N 1.34 N
Max. Force Std. Dev. 0.46 N 041 N

1. Each category was equally divided into 20%, 30%, 40%,
50% and 60% suction engagement thresholds.

of the smooth/large data. The trained RNN model was then
tested on 25 smooth/large trials and 20 discontinuous/small
trials. For each test, the mean absolute error (MAE) between
the predicted and measured force values are reported.

V. RESULTS

A summary of the 80 grasping trials is presented in Table
I; for each trial, the maximum force resisted by the grasp
prior to failure was found from the gathered data. The tubes
and skin provide a relatively low amount of contact friction,
which results in low maximum pullout forces. The standard
deviation is 25% and 31% of the mean for the smooth/large
and discontinuous/small trials respectively, indicating that
this experimental system contains significant variability rep-
resentative of real-world grasping. Fig. 9 shows typical con-
tinuous/large and discontinuous/small vertical force over
time during the pulling phase of the trials — the shape of
the force profiles of these two experimental conditions differ
significantly.

Large
—

Small
0% 10% 20% 30% 40%  50%
Fig. 11. Distribution of the mean absolute error (MAE) of the predicted

force for both objects using the model trained on the large object. The
mean (green, dashed vertical line) of the MAE is 21% for the large tube
and 20% for the smaller one. Whiskers have a maximal length of 1.5 times
the interquartile range.

As demonstrated with a single pulling trial under
continuous/large-tube conditions in Fig. 10, there is an ap-
parent correlation between the evolution of fingertip suction
flow rates and the external force acting on the object.
The suction engagement sensors start at an initial set-point.
As the object starts to be pulled vertically, more of the
suction orifice is occluded by the contact, resulting in more
suction engagement. The suction engagement of the two
fingers appears to peak at slightly different times during the
maneuver. By the time the grasp starts to fail, defined here
as a decrease in the pulling force, both suction engagement
sensors are already decreasing rapidly, which indicates that
the object is rolling/sliding past the fingertips. While the
qualitative correlation between suction sensing and pullout
force are apparent in this single trial, significant variability
between different grasp trials creates challenges for defining
a single closed-form prediction based solely on suction flow.

The performance of the RNN model, produced using the
procedure discussed in Sec. IV-C, is shown in Fig. 11. The
model achieved an MAE of 21% for the continuous/large
trials and 20% for the discontinuous/small trials. Similar
performance under both conditions indicates that the trained
model is robust to slight changes in object size and pulling
behavior. Yet, the discontinuous/small outcomes are more
varied, which is expected because the model was not exposed
to this condition. The data from two trials are shown as ex-
amples in Fig. 12. In cases with lower MAE, this preliminary
model appears to capture the shape of the force profile.

VI. DISCUSSION

Suction flow sensing is able to provide a measure of
object motion across the fingertips of a multifinger robotic
hand. This can be used to estimate trends in pullout force,
indicating that these signals may be useful in the feedback
control of dexterous manipulation. We suspect that this is
especially true for soft and underactuated robotic hands
where the motions of the fingers are more influenced by
external forces as compared with rigid grippers.

The RNN model is particularly susceptible to error at the
beginning of the pulling trials, because suction engagement
may remain relatively unchanged even as external force start
to ramp up, leading to early over-predictions as shown in Fig.
13(b). These results indicate that the fingertip suction flow
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Fig. 12. Using only the suction engagement signals, a prediction of the
pullout force, related to object’s displacement, was generated (green) and
compared to the measured force (black, solid). The absolute error (red)
and its mean (black, dashed) were then computed and used to quantify the
quality of the prediction.

sensing modality should be paired with complementary data,
such as robot manipulator motion, to provide more accurate
predictions under varying conditions. This work specifically
does not include these features in order to mitigate over-
fitting to our particular experimental setup. This machine
learning approach should be treated as a proof-of-concept
demonstration.

A. Application to robot control

During dexterous manipulation, it is useful to measure
and prevent grasp failure events, such as having the object
be pulled out of the hand. We study the utility of the
model developed in this work by comparing the real peak
pulling force with the experimental force at the time when
the predicted maximum occurs. This performance metric is
summarized in Fig. 13. It allows us to better understand how
error in the prediction could impact robot behaviors designed
only to prevent pullout grasp failures.

Applying this performance metric to the same set of trials
in Fig. 11 yields the results summarized in Fig. 14. The
median achieved force is 92% and 83% of the maximal
force for the continuous/large and discontinuous/small trials
respectively. The discontinuous/small result is especially
notable since the RNN was not trained on any of the trials
done with the smaller sized pipes or discontinuous pulling
motion, and since the evolution of the vertical reaction force
is noticeably different under these conditions, as shown in
Fig. 9.

There is large variability in the outcomes, sometimes
resulting in predictions that are approximately 50% of the
actual force peak. Notably, there are two outliers with
values around 0%. These data points are trials with high
MAE and predictions characterized by peak force predictions
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Fig. 13. A “stop point” metric is calculated as the moment where the
predicted reaction forces reaches its maximum. The performance metric for
one trial is defined as the measured force at the stop point, as a percentage
of the maximum measured force. This example is evaluated at 70%.
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Fig. 14. Maximal force prediction performance and distribution for both

data sets: continuous pulls with the large tube and discontinuous pulling
with the small tube. The mean (green, dashed vertical line) of the results
are 81% and 82% respectively. The median (orange, solid vertical line) are
92% and 83% respectively. Whiskers have a maximal length of 1.5 times
the interquartile range.

early in the trial — failure is conservatively predicted before
significant pulling forces are applied.

VII. CONCLUSIONS

Suction flow rate monitoring is a meaningful way to
perform tactile sensing with an underwater, suction-enabled
hand. When suction is applied to the fingertips, the flow
rate signal is sensitive to subtle hand-object motions during
pinching that occur during manipulation. While this sensing
modality could be treated as a binary contact sensor, we
find that the monitoring of the analog signal throughout a
grasping maneuver can allow us to predict, and potentially
prevent, grasp failures.

A. Future work

There exist several potential branches for future work.
More experimentation with a variety of objects and manip-
ulation primitives should be performed to better understand
the generality of this sensing modality. The addition of more
suction sensors and orifices on different locations of a multi-
finger gripper will also be explored. Finally, suction tactile
sensing will be fused with other complementary sensors to
enhance our capacity to precisely control the fingers and arms
during dexterous tasks.
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