ME102B - Mechatronics Design

Final Project Report - Horse Racer
Alex Castillo, Luis Flores, Jesse Medina, Eymon Wong

1 Opportunity

The opportunity stated in P2 was to create a game to help college students de-stress. After going through the
process of creating our carnival game, we’ve updated the opportunity this game presents. Our carnival game
is an affordable and somewhat portable source of fun for people of all ages that can be customized to provide
different game modes.

2 Strategy

Initially, we planned on using a launcher mechanism as a way to score points for our game. After speaking to
the teaching team, we decided to drop the launching mechanism and make the actuation of our racing horses
as clean as possible and that’s what we ended up achieving. We then decided to have the players throw balls
at a target with varying point targets. The objective of the game stayed the same in that the more accurate a
player is in a shorter amount of time will determine the winner. Instead of using a force sensor to determine
when a target is hit, we instead attached an ultrasonic sensor behind each target and had it read how far away
it detected a ball. Different distances meant different point distributions for each player which translated into
different amounts of steps a stepper motor would move. The stepper motor was also a change we implemented
and used it as the actual horse racing actuation. The DC brushed motor was used to raise flags at the end of
the race to indicate which of the two players had won. In the end, we used two Arduinos, one for each player
because we ran into an issue with blocking code. We wanted to only use one controller but in the end used
an Arduino for each player because it proved difficult in the rest of the allotted time to fix the blocking code
issue. The force sensor (FSR) was used to communicate to the other Arduino when one player had won the
race and reset the game. Another change made was in regards to the analog sensor and how we utilized it.
We planned to use a potentiometer to vary the speed at which the game could be played but ultimately used
a sliding potentiometer to turn the game on and off.

3 Integrated Physical Device
Figure 2 Figure 3.1 & 3.2

Figure 4
Figure 6

Figure 5

Figure 1: Image of fully integrated system

Timing Belt Pulley Horse Figure

Force Sensor

Ball Bearing

8X Screws #6-32,
3/8"

Ball Bearing
Housing
Brushed DC Motor

(a) One end of the railing system (b) Opposite end of railing system (c) Hlustrates FSR position

Figure 2: Railing system
Sliding Pot

Ultrasonic Sensor

Arduino -

(c) Positioning of the Ultrasonic sen-
(a) Arduino and wiring housing (b) Sliding Potentiometer sor

Figure 3: Housing for Arduino and Other Sensors

4 Function-Critical Decisions

The functional-critical decisions began with choosing the timing pulley and belt. The GT2 timing pulley
included a 6 mm belt with 36 teeth and a 5 mm bore. The timing belt included 582 teeth on a 2mm tooth
pitch which works with the pulley since it also has a 2 mm pitch.

Fere -
= B (O

F L L Fg_

— A= Jzma

(a) Force diagram for pulley system (b) Force diagram of the racing horse on the system

Figure 4: Forces acting in the system

First, we look at the pulley system on both ends to determine the pretension.

Fi=F,+7/d,F,=F,—1/d (1)

F T 0.013kgm
F,=-2°=7/d— Fe=2-=2——"""—=118N 2
=y T Fre =2 = 2 o @)

For the mounted portion sliding along the rail, we have the following calculations:
Z Mp, =0= FHorse($mount) - FR(05m) (3)
F

Fr = W — 2(0.051kg)(9.81m/5) Tmount = 1.00Zmount N 4

ZFy :OZFL+FR_FHOTSB
FL - FHorse - FR - FHorse - 2FH0rse$mount - FHorse(l - meount) = (0051k9)(981m/32)(1 - meount)
Fr = 0.500(1 — 22 mount) N

6

Py
~— ~— ~— ~—

5 Circuit Diagram & State Transition Diagram

Acduing

Tl pOT Tucaed in ruge /
allze
[ﬂmm OFF nofors off) Tuea 0 sensols 0

S
Gawe ON
Ul sonje H//ﬂ]

Ulken SonlC sense ball /

= Motor 01 for # stzps
" A B oo o couT

P01 Taned OFF
Twwn pFF SEuhs

Fore Seasor 15 pewed

~rove stgp)
far theps = com?

Duplicate

Geenit

otor fintles rovity # steps

COuNT > Step & limity p \.’&wa‘ :
~fae Flny 101 1
lay & 1
- &otate DL rotor -
10 sec okl Frntshed =
~ Rotate DL rolor (1
Rvttse €or Yz sec
Rur Sheppet cofor i1 eytne 1
for steps = counr
(a) State Diagram (b) Circuit Diagram

Figure 5: State and Circuit Diagram (NOTE: Create two of the same circuit diagram shown above, and connect
both onto the sliding potentiometer)

6 Reflection

Going through the motion of creating a project of this scope is bound to teach us a few things about teamwork.
There were a few things we found that worked and few that didn’t work so much while collaborating over the
span of the semester. Our communication was key throughout the semester with two scheduled meetings a
week where we could go over the aspects of the project. We communicated well throughout the semester and
all kept on the same page. Our communication allowed us to turn in our deliverables P1-4 on time and allowed
us to brainstorm ahead of time. While the work we produced was guided by the deliverable due dates, we felt
that we needed to start working on the hardware way ahead of time so that we could discover the obstacles
that would come with integrating the software. We wish we would’ve known to choose the ESP32 instead of
the Arduino ahead of time so that we could have only used one microcontroller.

7 Appendix

A B E F G H
Part Name Part Number |Amount Cost Total Cost Link Purchaser Vendor

1| Timing Belt GT2 Profile 1184 2 $9.95 $19.90 | hitps w.adafruit com/product/1184 Adafruit
2|DC brushed motor 2 50 50 [Lab Kit

3|Bread boards MN/A 2 $13.00 526.00 Eymon Amazon
4|#6-32 3/din hardware screws 8 $1.38 $11.04 vlowes. com/pdiHillman-6-] Lowes
5|#6-32 3/8in hardware scraws 6 $1.38 $8.28 lowes. com/pd/Hillman-6-1 Lowes

6 |Elmer's® Black Core Foam Board, 20" x 30" 4 58 $32 w.michaels.com/elmers-blaq Michaels
7|Sliding Potentiometer 2 50 50

8|Radial Ball Bearing 60877 1178 1 $6.95 $6.95 adafruit com/produc T4 Adafruit
9115mm Diameter Linear Bearing Pillow 1860 2 521.95 $43.90 adafruit. com/product/186{ Adafruit

10| Linear Bearing Supported Slide Rail - 1861 2 $29.95 $59.90 adafruit. com/product/186] Adafruit

11 [Aluminum GT2 Timing Pulley - 8mm § 1253 2 $11.95 $23.90 v adafruit com/product/125] Adafruit

12 | Stepper motor - NEMA-17 size - 200 324 2 514.00 $25.00 v.adafruit. com/product/324| Adafruit

13| Cardboard MN/A 2 S0 50 |Previously Owned |Alex

14|Wood Plank M/A 5 $4.80 $24.00 Luis Home Depot

15|36x36 Basic Felt N/A 4 $4.49 $17.96 Luis Michasls

16 | Arduino N/A 2 S0 50 | Arduino Kits Luis

17 |Motor Shield for Arduino 1438 2 $15.95 $35.90 Eymon Adafruit

18|Force Senser MN/A 2 50 50 [Previoulsy Owned |Luis

19| Ultrasonic Sensor N/A 2 50 50 Lab Kit

20 [3D-printed parts N/A 50 50 Citris Invention Lab

Overall Cost: $341.73

Figure 6: Bill of Materials

Note: System (s wirrored

Rail System

Lo hotse DC Mot

whl 2D pinfed
' 7 f/ay 4

VH Sonic
séasof

Ball Beﬂ-flna.

Horse Frgure

horee Ffﬁd"e Mount
Shide Pailing Platform

Figure 7: CAD assembly of entire setup

R S

~ & W

finclude <Adafruit MotorShield.h>

finclude <Arduino.h>

// Create the motor shield object with the default I2C address
10 Adafruit_MotorShield AFMS = Adafruit_MotorsShield();

11 Adafruit_StepperMotor *Motorl = AFMS.getStepper (200, 2);

12 Adafruit_DCMotor *myMotor = AFMS.getMotor(l);

13

14 // Settup variables:

w @

15
16 int pressurePin = RA0;//Force sensor
17 int force;

18

1% int POT = A2;

20 int potReading;

21

22 //Ultra-Sonic Sensors

23 int trigPin = 9; // TRIG pin
24 int echoPin = 8; // ECHO pin

[%]
w

int pastDist;

8

float duration_us, distance_cm;

[]
w -3 M

//Potentiometer

W k2
(=}

(%]

// Game Variablas:

int state = 1;

W W
o W R

[%]

int goal = 1950;

int progress = 0;

int onePoint = 400;

int twoPoint = 200;

39 int threePoint = 100;

40 int distancelstart = 1;

41 int distancelend = 10;

42 int distance2start = 15;

43 int distance2end = 26;

44 int distance3start = 10000; //not in use right now
5 int distance3end = 10001;

46

47 //Game Settup

48 void setup() {

49 Serial.begin(9600); // set up Serial library at 9600 bps
50 while (!Serial);

WoW oW
m -~ M

51 Serial.println("Stepper test!");
52

Figure 8: Code block 1

s2

53| // configure the trigger pin to output mode
54 pinMode (trigPin, OUTPUT);

59 // configure the echo pin to input mode

5 pinMode (echoPin, INPUT);

57

58 if (!AFMS.begin()) { // create with the default freguency 1l.6KHz
5% // if (!AFMS.begin(1000)) { // OR with a different fregquency, say lRHz
60 Serial.println("Could not find Motor Shield. Check wiring.");

61 while (1):

62| 1}

€63 Serial.println("Motor Shield found.");

64

65

(13 Motorl->setSpeed(20);

67 |}

68

69 void loop() {

70 |/ /while

71 // generate l0-microsecond pulse to TRIG pin
72 digitalWrite (trigPin, HIGH);

73 delayMicroseconds (10) ;

74 digitalWrite (trigPin, LOW);

75 // measure duration of pulse from ECHO pin
76 duration_us = pulseIn(echoPin, HIGH);

77

78 // calculate the distance

75 distance cm = 0.017 * duration_us;

80

81 switch (state) {

82 case 1:

83 Serial.println("Waiting for game to start...");
84 if (StartGame () == true){

85 state = 2;

B€ }

87

88

89 break;

S0

91 case 2:

92 Serial.print ("Score: ");

93 Serial.println (progress);

54

95 //Represents force sensor reading if other player wins
96 force = analogRead(pressurePin);
97 Serial.print("Force: ");

98 Serial.println (force);

239
100 //Pot reading

101 potReading = analogRead (POT);
102 Serial.print ("Pot reading: ");
103 Serial.println (potReading);

Figure 9: Code block 2

102 Serial .print ("Pot reading: ");

103 Serial.println (potReading);
104

105 // Scoring systems

106 if (force>50){

107 state = 7;

108 }

109 else if (progress >= goal){
110 state = 6;

111 }

112 else if (potReading < 200){
113 EndDurringGame () ;

114 reset_motor();

115 progress = 0;

116 state = 1;

117 1

118 else(

=
w

if ((distance_cm > distancelstart) && (distance_cm <= distancelend))

[3+]

Serial.println(distance_cm);
state = 3;
}

o N N
N = O

[3+]

if ((distance_cm > distance2start) && (distance_cm <= distance2end)) {
Serial.println(distance_cm);

state = 4;

}

NN

3]

R R e S S T sl e e ol e
]
@ ;s W

29 if ((distance_cm > distance3start) && (distance cm <= distance3end)){

30 Serial.println(distance cm);

31 state = 5;

32 }

133 }

124
135

136 break;

137
138 case 3:
135

140 Serial.println("Motor run for One Point!");
141
142 run_motor_scorel();

143 state = 2;

144
145 break;
146

147 case 4:
148
149 Serial.println("Motor run for Two Points!");
150

151 run_motor_score2();
152 state = 2;

153

Figure 10: Code block 3

Lur
154
155
156
157
158
159
160
1lel
162
163
164
165
lee6
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
150
191
152
153
194
195
196
197
158
199
200
201
202
203
204

205

break;
case 5:
Serial.println("Motor run for Three Points!"™);

run_motor_ scored();
state = 2;

break;
case 6:

Serial.println("Winner");

Serial.println("Resetting...");
raise flag();

reset_motor();
progress = 0;
state = 1;
delay (5000);

break;
case T:

Serial.println("Loser");

Serial.println("Resetting...");

reset_motor();
progress = 0;
state = 1;
delay(5000) ;

break;

bool StartGame () {
potReading = analogRead (POT) ;

if (potReading > 200) {
Serial.print("Starting Game with Pot reading: ");
Serial.println(potReading);
return true;

}

else{

return false;

Figure 11: Code block 4

206 bool EndDurringGame () {
207 potReading = analogRead (POT);

208
209 if (potReading < 200){
210 Serial.print ("Current Pot Value: ");

Serial.println(potReading) ;
Serial.println("Ending the game");

return true;

214 }

215 else {

216 return false;
217 }

218

}

void run_motor_scorel () {

b
=
o

&)
[]

if (progress + onePoint >= goal){

221 int leftover;

222 leftover = goal - progress;

223 Motorl->step (leftover, BACEWARD, INTERLEAVE);
224 progress = progress + leftover;

225 }

226 else{

227 Motorl->step (onePoint, BACEWARD, INTERLEAVE);
228 progress = progress + onePoint;

225 }

230}

231

void run_motor_score2 () {

32
233 if (progress + twoPoint >= goal){
34

2 int leftover = goal - progress;

235 Motorl->step (leftover, BACEWARD, INTERLEAVE):;
236 progress = progress + leftover;

237| 1

238 else|

239 Motorl->step (twoPoint, BACEWARD, INTERLEAVE);
240 progress = progress + twoPoint;

241 }

242}

243

244 //not in use

245 void run motor_score3 () {

246 if (progress + threePoint >= goal){

247 int leftover = goal - progress;

2489 Motorl->step(leftover, BACEWARD, INTERLEAVE);
249 progress = progress + leftover;

250| }

251 else{
2 Motorl->step(threePoint, BACKWARD, INTERLEAVE);

253 progress = progress + threePoint;

Figure 12: Code block 5

10

[]
woour
Wmw o -] ;U

[V]

[3% TN % B oS T % I o8)
o

Dy 0oWn

[y

RR RN RN D NN
=== TS B T B R S B |
BN E O w om0 W

(S T G T (S N]

@ @ ©

o W

(o8

(as]

D =] o WU

N NN NN
@ @ @ @
w

LY S LY B T+ B+ B¥« ¥ 4]
s W N O

w

[T S I o6 I S B S B N)

n
o™

[

void reset_motor () {
Serial.println("Resetting the motor");

Motorl->step (progress, FORWARD, INTERLEAVE);

// code for flag raising
void raise_flag(){
Serial.println("Raising the flag");
uint8 _t i;
int maxSpeed = 40;

Serial.println("Raising Flag");

myMotor—>run (FORWARD) ;

for (i=0; i<maxSpeed; i++) {
myMotor->setSpeed (1) ;
delay (10);

}

for (i=maxSpeed; i!=0; i--) {
myMotor—>setSpeed (i) ;
delay(10) ;|

delay(S000) ;
Serial.println("Putting Flag down"):;

myMotor->run (BACKWARD) ;

for (1=0; i<maxSpeed; i++) {
myMotor->setSpeed (1) ;
delay (10);

}

for (i=maxSpeed; i!=0; i--) {
myMotor->setSpeed (i) ;
delay (10);

myMotor—>run (RELEASE) ;
delay(1000) ;

Figure 13: Code block 6

11

