Pin Bot

Elaine Llacuna, Gissell Jimenez, Hannah Dam, and Tristan Villanueva

Opportunity:

While art can be created through many mediums, experiencing this art tends to heavily depend on
visual senses. For those with sight impairments it can be difficult to fully experience purely visual art. Our
project aims to increase accessibility to art for those with visual disabilities. In order to mend this gap, our
group created a device: Pin Bot that actuates pins to transform a digital image to a 3D topological, tactile
piece where one can utilize the sense of touch to experience art through a different lens.

High-Level Strategy

Our initial desired functionality for the Pin Bot involved a JPEG or PNG input that would be
converted to grayscale values. These values would then be calibrated to the first degree of freedom (the
travel distance of a pin pusher on a motorized linkage) (z). Utilizing the second and third degrees of
freedom, this pin pushing mechanism would then travel in the horizontal (x) and vertical (y) directions in
order to reach all pins on the board.

Our achieved functionality was heavily influenced by the mechanical stability challenges we
faced from our first iteration. The original intent involved horizontal rods and bearings with the vertical
(y) stepper motor carriage and lead screw carriages dangling on horizontal (x) belt and pulley system.
This setup posed a few main problems: binding due to deflection, high friction along the rods, and
insufficient gear reduction along the belt for horizontal (x) movement. These problems combined to
significantly reduce horizontal (x) movement.

The following mechanical set-up was utilized in order to solve these road-blocks: the pin pushing
mechanism with the linkage and DC brushed motor sat on a carriage attached to a lead screw on a stepper
motor for vertical (y) movement. This lead screw and stepper motor are attached to a carriage with
V-wheels under it that travel along the horizontal (x) direction of the bottom 80/20 frame for friction and
binding reduction. In order to reduce deflection of the vertical lead screw and maintain mechanical
stability, two main actions were taken: attaching V-wheels at the top of the lead screw to glide along the
top 80/20 rod and attaching a vertical steel rod to increase the carriage’s moment of inertia. With all these
modifications the horizontal (x) movement still posed many stalling problems such that the final
functionality rejected automated (x) movement and utilized manual (x) movement.

The following electrical and software procedure was utilized to pair with the new mechanical
functionality: the user turns a potentiometer to set the angular speed of the stepper motor that controls the
vertical (y) motion of the pin pushing mechanism on a carriage. The potentiometer’s “high” value
corresponds to the maximum vertical speed. The potentiometer’s *“ low” value corresponds to the
minimum vertical speed. Once the button is pushed the pin pushing mechanism moves down a row. At
every other row the pin pusher pushes a pin. Once the pin pusher has reached 9 rows the pin pusher goes
back up. The user moves the carriages over one column in the horizontal (x) direction and the procedure
restarts. At the end, a basic1-D image is produced and the Pin Bot is ready to make another image.

Photo of integrated physical device

Piece of Stability

'V-Wheel Assembly 1

Printed Spacer x 4
Crank Slider Carriage
225 Pins

Stepper Motor Carriage | Button
((Digital Input)
V-Wheel Assembly 2 Potentiometer

7 (Analog Input)

DC Motor

Bearing to support rod

Threaded Rod Stepper Motor

V-Wheel Assembly 2

A= - 4
Function Critical Decisions

We wanted the shaft to have a total displacement of 1 inch when we pushed the pins. To achieve this
displacement we set the crank slider diameter to be 1 inch. The other clearance we needed to account for
was the height of the frame such that our vertical carriage was able to reach all pins and accounted for the
height of the stepper carriage. For this reason we had a size of 16 inches for the frame size.

Updated Circuit Diagrams

Potentiometer
10kQ

Power Supply

Bipolar Stepper Motor

ROB-08420

3O

[N

A
st 5 i
Resistor gl
+5%
10kQ A2.134

DRV8823

Adafrult
HUZZAS2
Esp32
Feather

it LLL

fritzing

DC Sewvo ptor + Rotony Engoder

State Transition Diagram

Button==High Count is even
Speed of Threaded rod prop to Pot read (analog)

tate 2: Y Motion
State

Assembly moves down 1 pin at a time
Counter = Counter + 1

State 3: Z Motion
State
Push one pin

[nitialization
All Buttons Off (Digital)
t— Counter = 0

All Motors Off

Count is 9
Reset Count to 0

State 1: Idle
State

Reflection

State 4: Y Motion Up

Overall, we would pay more attention to manufacturing, in particular manufacturing early. We noticed
that prototyping earlier made it easier to determine what was needed/not needed. Paying attention to
tolerances also would’ve made this process a lot faster. We also recognize that starting and mastering one
degree of freedom earlier would’ve made it a lot easier to take what we learned from that process to then
increase the degrees of freedom. We ended up not incorporating the horizontal transmission after lots of
trial and error and could’ve just begun without it in the first place and refining the stability in our design.
A lot of the problems that arose from the horizontal transmission originated from the fact that we didn’t
clearly determine the power specifications needed from the stepper motor at the beginning.

Appendix
Bill of Materials:

Links to all items can be found at the full document:

Item Name Description Quantity Vendor
Stepper Motor With threaded rod 1 Pololu
80-20, hollow 1” 8 ft long 1 McMaster
Corner Brackets with T |20 x 28 x 28mm with M5
Nuts T-slots 12 Amazon
T-nuts M5 24 Amazon
3D Printed with PLA on
Plastic Pins Ultimaker 3 225 -
Polyjet Printed with
Agilus30 Clear Resin on Jacobs Hall Material
Spacers Stratsys Object Connect |4 Store
3D Printed with PLA on
L-brackets Ultimaker 3 4 -
Pin Board Walls with Laser cut from Acrylic Jacobs Hall Material
slots 1/4” 2 Store
Pin Board Retaining Laser cut from Acrylic Jacobs Hall Material
Panel 1/4” 1 Store
Laser cut box from Jacobs Hall Material
Pin Board Platform Box |Plywood 1/4” x 24” x 48" |1 Store
Hex Nuts M6 304 Stainless Steel |32 Amazon
M6 x 130mm 304
Hex Head Screw Stainless Steel 4 Amazon
Rod 6061 Aluminum 3ft 1 McMaster
Dry-Running Mounted Two-Bolt Flange, Bronze,
Sleeve Bearing for 1/4" Shaft Diameter |2 McMaster
4.5mm Hex, 45mm Long,
Standoffs M3 x 0.5mm Thread 4 McMaster
3D Printed with PLA on
Bottom Carriage Prusa -
3D Printed with PLA on
Brackets for rod Prusa 2 -
V-wheels for 1"x1" 80/20 4 -
M5 Screws for L-Bracket |[M5 x 12mm 12 -
Corner Brackets For 1 inch 80-20 12 Amazon

https://docs.google.com/spreadsheets/d/1AdGuZcflxkt3eAM14mh-4ZVDhWOkVUhNIqcOThTy3Vc/edit?usp=sharing

M5 Screws M5 x 8mm 12 Amazon

M5 Screws M5 x 10mm 12 Cory Machine Shop
M5 Nuts Nuts for Assembly 20 Cory Machine Shop
M6 Screws for V-wheels [M6 x 25.4mm 4 Cory Machine Shop
M6 Hex Nuts for

V-wheels M6 8 Cory Machine Shop
Brushed DC Motor - 1 LabKit

M3 Hex Nuts 1 Cory Machine Shop
Breadboard 2 LabKit

Washers M5 50 Cory Machine Shop
CAD Images:

3D Side View of total assembly

Side View

Top View

Code for pushing every other pin
#define ENC_COUNT_REV 230s

// Encoder output to Arduino Interrupt pin. Tracks the pulse cou
//#define ENC_IN_RIGHT_A 27
#define ENC_IN_RIGHT_A 16

// Other encoder output to Arduino to keep track of wheel direct
// Tracks the direction of rotation.

//#define ENC_IN_RIGHT_B 33

#define ENC_IN_RIGHT_B 15

//Define ESP32 Pins
#include <ESP32Encoder.h>
#define BIN_1 26

#define BIN_2 25

#define LED_PIN 13
#define LED 14

#define POT 34

#define BTN 4

#define HOR 36

ESP32Encoder encoder;
// setting PWM properties -------------—---oom—-

int omegaSpeed = @;
const int freq = 5000;
const int ledChannel_1
const int ledChannel_2
const int resolution = 8;

volatile int count = @; // encoder count
int MAX_PWM_VOLTAGE = 255;

int potReading = 0;

int value = 0;

int push_value = 100;

// True = Forward; False = Reverse
boolean Direction_right = true;

1;
2;

// Keep track of the number of right wheel pulses
volatile long right_wheel_pulse_count = @;

// 25 ms interval for measurements
int interval = 25;

// Counters for milliseconds during interval
long startMillis = 0@;
long currentMillis = 0@;

// VYariable for RPM measuerment
float rpm_right = @;

// Variable for angular velocity measurement
float ang_velocity_right = 0;
float ang_velocity_right_deg = 0;

const float rpm_to_radians = 0.10471975512;
const float rad_to_deg = 57.29578;

int Aval
int Bval

9;
e;

#include <Stepper.h>
const int stepsPerRevolution = 310; // change this to fit the number of steps per revolution

Stepper threaded(stepsPerRevolution, 12, 13, 27, 33);

// variables will change:
int buttonState = @; // variable for reading the pushbutton status

int state=1;

int speed_pot=0;

void setup() {
Serial.begin(115200);

pinMode(LED, OUTPUT); // declare the LED pin number, CHANGE THIS!
pinMode(HOR,OUTPUT);

pinMode(LED_PIN, OUTPUT); // configures the specified pin to behave either as an input or an output
digitalWrite(LED_PIN, LOW); // sets the initial state of LED as turned-off

pinMode(POT, INPUT); // declare the potentiometer pin number, CHANGE THIS!

// configure LED PWM functionalitites

ledcSetup(ledChannel_1, freq, resolution);

ledcSetup(ledChannel_2, freq, resolution);

// attach the channel to the GPIO to be controlled
ledcAttachPin(BIN_1, ledChannel_1);
ledcAttachPin(BIN_2, ledChannel_2);

// Set pin states of the encoder
pinMode(ENC_IN_RIGHT_A , INPUT_PULLUP);
pinMode(ENC_IN_RIGHT_B , INPUT);

pinMode(BTN, INPUT);

// Pulse occurs at rising edge of signal
attachInterrupt(digitalPinToInterrupt(ENC_IN_RIGHT_A), right_wheel_pulse, RISING);

count = @;

}
void loop() {
switch (state) {
case 1: { //check button pressed
Serial.println("state 1");

pot();
threaded. setSpeed(speed_pot);

buttonState = digitalRead(BTN);
Serial.println(buttonState);
if (buttonState == 1) {
state = 2; //go down
}
}

break;

case 2: //go down
{
Serial.println("state 2");
while (count <= 9) {
Serial.println("count:");
Serial.printlnCcount);
down();
count++;
if Ccount%2 == @) {
state = 3; //push
break;

}
delay(2000);

}

if (state!=3){
count = @;
state = 4;

}

break;

}

case 3: //push

{
Serial.println("state 3");

push(Q);
state = 2;

break;

}

case 4: //up
{
Serial.println("state 4");
while (count <= 9) {
upQ;
count++;
}
count = @;
state = 1;
startMillis = millis(); //initial start time
break;

}

// Increment the number of pulses by 1
void right_wheel_pulse() {

if (Aval == @) {
Direction_right = false; // Reverse
right_wheel_pulse_count--;

}

else {
Direction_right = true; // Forward
right_wheel_pulse_count++;

H
¥

void blink()

{
digitalWrite(LED, HIGH);
delay(500);
digitalWrite(LED, LOW);
delay(500);

}
void data() {

Serial.print("Value: ");
Serial.println(value);
Serial.print("Push Value: ");
Serial.println(push_value);
Serial.print("Count: ");
Serial.println(count);

Serial.print(" Pulses: ");
Serial.println(right_wheel_pulse_count);
Serial.println(" ");

Serial.print(" ");

void push(Q) {

while (right_wheel_pulse_count < push_value) {
Aval = 1;
digitalWrite(LED_PIN, HIGH);
ledcWrite(ledChannel_1, LOW);
ledcWrite(ledChannel_2, 250);
data();

H

digitalWrite(LED_PIN, LOW);
ledcWrite(ledChannel_1, LOW);

ledcWrite(ledChannel_2, LOW);

delay(2000);
right_wheel_pulse_count = 0;

¥
void pot() {

//read potentiometer -> set state
potReading = analogRead(POT);

value = map(potReading, @, 4095, 0, 100);
Serial.printlnCvalue);

if (value <= 50) {
Serial.print("Half Speed");
speed_pot = 15;

}

else

{
Serial.print("Full Speed");
speed_pot= 50;

}

void down()

{
Serial.println("clockwise: down");
threaded. step(-stepsPerRevolution);
// if (BTN == HIGH){
// // going back up:
// threaded.step(3100),;
// delay(2500);

void up()
{

Serial.println("counter clockwise: up");
threaded. step(stepsPerRevolution);

}

Code for making a CAL Logo :

int omegaSpeed = 0;
const int freq = 5000;

const int ledChannel_1 = 1;
const int ledChannel_2 = 2;
const int resolution = 8;

volatile int count = @; // encoder count
int MAX_PWM_VOLTAGE = 255;

int potReading = 0;

int value = 0;

int push_value = 100;

// True = Forward; False = Reverse
boolean Direction_right = true;

// Keep track of the number of right wheel pulses
volatile long right_wheel_pulse_count = @;

// 25 ms interval for measurements
int interval = 25;

// Counters for milliseconds during interval
long startMillis = 0;
long currentMillis = 0;

// Variable for RPM measuerment
float rpm_right = @;

// Variable for angular velocity measurement
float ang_velocity_right = 0;
float ang_velocity_right_deg = 0;

const float rpm_to_radians = 0.10471975512;
const float rad_to_deg = 57.29578;

int Aval = 0;
int Bval = 0;

int cal(] = {1, 2, 3, 4, 5, 6, 7, 8, 10, 17, 19, 26, 37, 38, 39, 40, 41, 42, 43, 44, 46, 49, 55, 56, 57, 58, 59, ¢0, 61, 62, 73, 74, 75, 76, 77, 78, 79, 80,89,98};
int pushCount;
int upCount;
#include <Stepper.h>
const int stepsPerRevolution = 31@; // change this to fit the number of steps per revolution
Stepper threaded(stepsPerRevolution, 12, 13, 27, 33);
// variables will change:
int buttonState = @; // variable for reading the pushbutton status
int state = 1;
int speed_pot = @;
void setup() {
// Open the serial port at 9600 bps

Serial.begin(115200);

// attachInterrupt(BTN, isr, RISING);
pinMode(LED, QUTPUT);
pinModeCHOR, OUTPUT);

pinMode(LED_PIN, OUTPUT); // configures the specified pin to behave either as an input or an output
digitalWrite(LED_PIN, LOW); // sets the initial state of LED as turned-off

pinMode(POT, INPUT); // declare the potentiometer pin number, CHANGE THIS!

// configure LED PWM functionalitites

ledcSetup(ledChannel_1, freq, resolution);

ledcSetup(ledChannel_2, freq, resolution);

// attach the channel to the GPIO to be controlled
ledcAttachPin(BIN_1, ledChannel_1);
ledcAttachPin(BIN_2, ledChannel_2);

pirMode(ENC_IN_RIGHT_A , INPUT_PULLUP);
pinMode(ENC_IN_RIGHT_B , INPUT);

pinMode(BTN, INPUT);

// Pulse occurs at rising edge of signal
attachInterrupt(digitalPinToInterrupt(ENC_IN_RIGHT_A), right_wheel_pulse, RISING);

count = @;

}
void loop() {

switch (state) {
case 1: { //check button pressed
// Serial.println("state 1");

pot();
threaded. setSpeed(speed_pot);

buttonState = digitalRead(BTN);
// Serial.println(buttonState);
if (buttonState = 1) {
state = 2; //go down
}
}

break;

case 2: //go down

{
Serial.println("state 2");

Serial.println("count up");
count++;

down();

for (pushCount = @; (pushCount <= 4@); pushCount++)
{
Serial.println("cal[pushCount]:");
Serial.printlnCcal [pushCount]);
if (count == cal[pushCount])
{
state = 3; //push
break;
}
}

if (count % 9 = 0@ &% count != @) {
state = 4;
break;

break;

B
case 3: //push

{
Serial.println("state 3");

push(;
state = 2;

break;

}

case 4: //up

{
Serial.println("state 4");
for (upCount = @; (upCount <= 8); upCount++){

upQ;
}
state = 1;
startMillis = millis(); //initial start time
break;
}]
case 5:
{

currentMillis = millis(); //get the current "time" (actually the number of milliseconds since the program started)
if (currentMillis - startMillis >= 5000) //test whether the period has elapsed

{
digitalWrite(HOR, HIGH);
}
digitalWrite(HOR, LOW);
state = 1;
break;
}

// Increment the number of pulses by 1
vold right_wheel_pulse() {

if (Aval = @) {
Direction_right = false; // Reverse
right_wheel_pulse_count--;

}

else {
Direction_right = true; // Forward
right_wheel_pulse_count++;

}

}

void blink()

{
digitalWrite(LED, HIGH);
delay(500);
digitalWrite(LED, LOW);
delay(500);

}
void data() {

Serial.print("Value: ");
Serial.printlnQvalue);
Serial.print("Push Value: ");
Serial.println(push_value);
Serial.print("Count: ");
Serial.println(count);

Serial.print(" Pulses: ");
Serial.println(right_wheel_pulse_count);
Serial.println(" ");

Serial.print(" ");

void push() {

while (right_wheel_pulse_count < push_value) {
Aval = 1;
digitalWrite(LED_PIN, HIGH);
ledcWrite(ledChannel_1, LOW);
ledcWrite(ledChannel_2, 250);
// dataQ);

}

digitalWrite(LED_PIN, LOW);
ledcWrite(ledChannel_1, LOW);
ledcWrite(ledChannel_2, LOW);

delay(2000);
right_wheel_pulse_count = 0;

}
void pot() {

//read potentiometer -> set state
potReading = analogRead(POT);

value = map(potReading, @, 4095, 0, 100);
Serial.printlnQvalue);

if (value <= 50) {
Serial.print("Half Extension");

speed_pot = 30;
}
else
{
Serial.print("Full Extension");
speed_pot = 80;
}
}
void down()
{

Serial.println("clockwise: down");
threaded.step(-stepsPerRevolution);

void up(Q)

{
Serial.println("counter clockwise: up");
threaded. step(stepsPerRevolution);

}

