Aakash Ramachandran
Ingrid Shan
ME 102B Final Project (Group 20)

Opportunity The original goal of our project was to make a walking linkage device inspired by a slinky walking
down the stairs. However, financial constraints made that infeasible so we pivoted to our current design. We were
interested in exploring mechanisms for search & rescue and for navigating environmental hazards. Our linkage
stows vertically, but when expanded it reaches over horizontally in a bridge-like structure. Our miniaturized
system can provide supplies and/or rescue individuals when trapped in dangerous terrain.

High-Level Strategy and Comparison of Functionality (Desired vs. Achieved) The overall goal of our design
was to explore a unique over-centering linkage and the various mobility applications for which it could be used.
The main component of our design was our linkage, which stows vertically, but when extended it reaches out
horizontally. We then developed a rotating base upon which our linkage was mounted, to provide more flexibility
for the aforementioned applications. The linkage is powered by a DC motor with a 1:3 gear reduction for added
torque. This is linked to a rack/pinion system which drives the two ends of the base of the linkage. A 12V, 59Ncm
stepper motor also drives the turntable via a timing belt. Our original high-level strategy was to design a walking
slinky. It would have the following features: a turntable at each base to allow for a change of direction, an offset
scissor link mechanism as described earlier, and a conveyor belt to change the center of gravity so the mechanism
could walk. Each turntable would be driven with NEMA 17 stepper motors, the linkage would be driven by a DC
motor powering a rack and pinion system, and the conveyor belt would be driven in a similar manner as well.
Though we had to decrease our scope from our initial walking linkage idea, our goal of driving an interesting
linkage with a low required torque was achieved and we were able to reliably power the extension and contraction
of the system, which solves one subproblem in creating a walking linkage.

Integrated Physical Device See Appendix for subsystem (turntable transmission and expansion/contraction
transmission) components.

~ linkage

turntable transmission

(stepper motor) expansion/contraction
transmission (brushed dc

potentiometers
(analog inputs)

/limit switches S
/, (digital sensors) Sk

Figure 1 Integrated device with key components labeled,

Function-Critical Decisions We can solve for the loads the bearing (R,) and pin constraint (R,) will experience
using the static equations seen above. The bearing we used had a maximum load of 110 Ibs, so we are well within
the limits. As seen below, we chose a linear speed of 1 in/s and input our expected load at the motor to calculate
the required RPM and torque of the motor, then ultimately chose the Pololu 20D 250:1 with a gear ratio of 1:3 to
reach the specifications we needed.

i)\
Bearing 1 5in Pin constraint
P, weight of the linkage assembly (1 Ib) R

YE, =0 YM, =0
Ry —Ry—P =0 P%15in —Ry*1in =0
Ry =R, +P Ry = 6.5 lbs

Ry = 14 lbs

Design Specifications - Belt Motor

Rotational Speed (rad/s) Required Speed (RPM) Decided Motor

2 19.09859317 NEMA 17 84 Oz-in
Expected Load at Input (0z) Sprocket Diameter (in) Required Torque (oz in) Decided Gear Ratio
500 0.5 250 1:3

Design Specifications

Linear Speed (in/s) Pinion Diameter (in) Required Speed (RPM) Decided Motor

1 0.375 50.92958179 Pololu 20D 250:1
Expected Load at Input (0z) Miter Gear Diameter (in) Required Torque (oz in) Decided Gear Ratio
224 0.5 112 1:3

Figure 2: Caleulations for functioning transmission. Top left shows a free body diagram of the system at the critical load case.
Top right shows caleulations for bearing reaction forces. Bottom charts show chosen specifications for belt motor and
expansion/contraction linkage motor respectively.

Updated Circuit Diagram and State Transition Diagram Figure 3 shows the updated circuit diagram. See
appendix for layout on breadboard. The GPIO pin definitions for all inputs into the ESP32 are shown in the
software section of the appendix. Figure 4 shows the updated state transition diagram, which shows how
potentiometer 1 controls the expansion/contraction of the linkage, and potentiometer two controls the direction of
the turntables movement. Limit switches prevent the linkage from expanding or contracting too much.

| Stepper Motor

Pot 1

Pot 2

Limit Switch 1

"

DC Motor

Limit Switch 2

Figure 3: Updated circuit diagram with key components labeled.

2
Collapsing Reaching

State Machine

Potentiometer 1 Potentiometer 1
turned to low turned to high
value value

Limit switch triggered or Limit switch
potentiometer 1 tumed to triggered or potentiometer 1
center value 1 turned to center value
Potentiometer 2 Potentiometer 2
turned to low value turned to high value
Potentiometer 2 Potentiometer 2 Turni ng

turned to center value turned to center value

Right

Figure 4: State transition diagram.

Reflection One of the strategies that worked well for our group was to have weekly meetings with each other to
ensure our design was on track. This helped us to pivot when certain mechanisms proved difficult to design. If we
were to do this again, we would have prototyped earlier in order to determine what would and would not be
possible to design/build under our limitations.

Appendix

Bill of Materials
Item No. Description Part Number Quantity Costperunit Cost Source Link Comments TOTAL COST ‘
1 Pinion Motor ~ 20D-125:1 1 528.95 $28.95 Pololu hitps:/iwww polo $592.39
2 Flexible Shaft C(2464K12 1 $54.82 554.82 McMaster-Carr hittps /fwww.men
3 Rotary Shatft 1327TK103 1 $4.07 $4.07 McMaster-Carr https://www.men
4 Shaft Collar 6435K51 6 $4.17 525.02 McMaster-Carr hittps /hwww.men
5 Shim 97022A865 6 $9.61 519.22 McMaster-Carr hittps/fwww.men Pack of &
6 Belleville Washe $4065K21 6 $6.34 $6.34 McMaster-Carr https//www.mcn Pack of 10
7 Ball Bearing 60355K502 5 $6.65 533.25 McMaster-Carr https:/fwww men
8 Miter Gear 729TK12 2 $9.89 519.78 McMaster-Carr hitps:/fwww.men
9 Rotary Shaft 132TK105 1 $5.66 $5.66 McMaster-Carr https://www.men
10 Pinion 2662N24 2 3483 $9.66 McMaster-Carr https-//www mcn
11 Rack 2662N54 2 477 $9.54 McMaster-Carr https-/iwww men
12 Bevel Housing Custom 1 $0 21 $0.21 Jacobs (3D Prini https-//cloud 3dp Price from 3DPrinter0S
13 Motor Housing Custom 1 5029 $0.29 Jacobs (3D Prini https-//cloud 3dp Price from 3DPrinter0S
14 Sleeve Bearing (6723K9 4 $6.36 525.44 McMaster-Carr hitps:/fwww men
15 Linear Guide 6723K51 1 530.00 530.00 McMaster-Carr hitps:/fwww.mcn Cut in half to make 2
16 Sleeve Bearing [Custom 2 $0.02 $0.04 Jacobs (3D Print https:/icloud. 3dp Price frem 3DPrinterQS
17 Sleeve Bearing 6389K3 2 $4.59 $9.186 McMaster-Carr https://www.men
18 Housing Bracket Custom 2 $0.04 $0.08 Jacobs (3D Print https://cloud.3dp Price frem 3DPrinterQS
19 Platform Custom 1 $33.30 $33.30 Jacobs (Laser C hitps://store jaco Price from Jaccbs Material Stol
20 Socket Head Sc 90128A218 4 $1.53 $1.53 McMaster-Carr hitps-//www.mcn Pack of 10
21 Hex Nut 90480A011 4 $2.21 $2.21 McMaster-Carr https://www.mcn Pack of 100
22 Housing Lid Custom 1 $0.20 $0.20 Jacobs (3D Prini https-/icloud.3dp Price frem 3DPrinter0S
23 Belt Motor 25D0-499:1 1 528.95 528.95 Pololu hitps:fiwww polo
24 Belt Motor Moun Custom 1 5017 $0.17 Jacobs (3D Prini https://cloud.3d; Price from 3DPrinterOS
25 1/din Spacer 94639A352 1 51245 512.46 McMaster-Carr https:/fwww.mcn Pack of 100
26 Set Screw Shaft 6412K11 1 51093 510.93 McMaster-Carr hitps:/fwww.men
27 Hex Standoff S4868A730 2 $5.01 510.02 McMaster-Carr hitps:/fwww.men
28 1/4-20 Screw 51290A010 1 51471 514.71 McMaster-Carr https-/fwww men Pack of 50
29 1/din Shaft 1886KI 10 54 88 548 80 McMaster-Carr hitps-/fwww men 127, cut to length of 6”
30 Shaft Collar, rotz: 941476 20 5155 §31.00 McMaster-Carr hitps-/fwww men
31 Sleeve Bearing 6389K231 20 $0.69 513.80 McMaster-Carr https/fwww men
32 Teflon Washer 956304242 2 $9.94 519.86 McMaster-Carr hitps:/fwww.men Pack of 10
33 12 Tooth Sprock 27377101 20 $1.25 525.00 McMaster-Carr hitps://cloud 3dp Price from 3DPrinter0S
34 Long Link Custom 8 $2.08 516.64 Jacobs (Laser C hitps://store jaco Price from Jacobs Material Stol
35 Short Link Custom 8 $2.08 516.64 Jacobs (Laser C hitps://store jaco Price from Jacobs Material Stol
36 Hex Standoff 54868A730 12 $2.05 524.60 McMaster-Carr hitps:/fwww.men

CAD of Mechanical Transmissions

Acrylic
Baseplate

Acrylic Plates

Flanged sleeve
bearings

Stepper
motor

limit switch housing 3d printed housing

linear guide rail brushed dc motor

(unactuated)

shim + belville
washer

ball bearing

laser cut
base plate
shaft collar
rack 6 mm shaft
pinion gear linear slide
miter gear
pin constraint for linkage
Circuit Layout

Early prototype of the circuit is shown on the left. It was ultimately soldered onto a protoboard for reliability.

. DCmotor _2A

wires =

i ES/’Pg_Z/to aptop
. connection:’

3.3V P
ower\

2/ 3
\ Ground 5V Power

Code with Event Driven Programming

linkage_arm_v2 | Arduino 1.8.19
File Edit Sketch Tools Help

linkage_arm_v2

finclude <Arduino.h4

fincluds <ESP32Encoder.h>

fdefine BIN_1 26 // declare motor pin

fdefine BIN 2 25 // declare motor pin

fd=fine BTN 27 // declare the button ED pin number
fdefine LED PIN 13 // declare the builtin LED pin number
fdefine POT 14 // declare potentiometer pin

fdefine POT2 13 // declare turntable potentiomster pin
fdefine DIR 15 // declare stepper motor dir

fdefine STEP 32 // declare stepper motor step

fdefine LIM 1 16 // declare limit switch 1

fdefine LIM 2 17 // declare limit switch 2

ESP32Encoder encoder;

//8etup wvariables ————————————————
const int freg = 5000;

const int pwmChannel = 0;
const int resclution = 8;
volatile bool buttonIsPressed = false;

const int ledChannel 1 = 1;
const int ledChannel 2 = 2;
int MAX PWM VOLTAGE = 253;
int motor_ PWM;

int difference;

int steps_per_rev = 500;
int state = 1;

volatile int count = 0; // encoder count

int potReading = analogRead(POT) ;

int pot2Reading = analogRead (POT2);

int prevPotReading = 0;

volatile bool interruptCounter = false; // check timesr interrupt 1
volatile kool deltaT = false; // check timesr interrupt 2

int totalInterrupts = 0; // counts the number of triggering of the alarm
NULL;

NULL;

*

hw_timer t timer0

hw_timer t * timerl

portMUX TYPE timerMux(= portMUX INITIALIZER UNLOCEED;
portMUX TYPE timerMuxl = portMUX INITIALIZER UNLCCEED;

int v = 0;

//Initialization ————————————————————————————————————

void IRAM ATTR isr() { // the function to be called when interrupt is triggered
buttonIsPressed = trus;

void IRAM ATTR onTimeO () {
portENTER_CRITICAL_ISR(&timerMuxG];
interruptCounter = true; // the function to be called when timer interrupt is triggered
portEXIT_CRITICAL_ISR(&timerMuxO};

void IRAM ATTR onTimel () |
portENTER_CRITICAL_ISR(&timerMuxl];
count = encoder.getCount();
encoder.clearCount ();
deltaT = trus; // the function to be called when timer interrupt is triggered
pPortEXIT CRITICAL ISE(&timsrMuxl);

void collapse() {
// run motor away from stationary bearing
ledcWrite (ledChannel 2, LOW);
ledCWIite(ledChannel_l, MA¥ PWM VOLTAGE) ;
motor PWM = —MAX PWM VOLTAGE;

bool PotReadingGreater () |
if (potReading > 2500) {

return true;

} el=se {

return false;

bool PotReadingLess () |
if (potReading < 1500) {
return true;
} =l=e |

return false;

bool TurntablePotReadingLow () |
if (pot2Reading < 1500) {
return true;
} else |

return false;

bool TurntablePotReadingHigh() |
if (pot2Reading > 2500) {
return true;
} =else {

return false;

bool TurntabklePotCentered() |
i1f (pot2Reading > 1500 && pot2Reading < 2500)
return true;
} else {

return false;

bool PotReadingSams() |
if (potBeading > 1500 && potReading < 2500)
return true;
} els=e {

return false;

void waiting () {
ledcWrite (ledChannsl 1, LOW);
ledcWrite (ledChannel 2, LOW);
motor PWM = 0;

vold reach({) |
// run motor towards stationary bearing
ledcWrite (ledChannel 1, LOW);
lechrite{ledChannel_2, MA¥ PWM VOLTAGE] ;
motor EWM = MAX PWM VOLTAGE;

volid turnLeft () |
digitalWrite (DIR, LOW);

Serial .println("Spinning Clockwise...");

for{int 1 = 0; i<steps_per_rev; 1i++)
{
digitalWrite (STEP, HIGH);
delayMicrossconds (1000) ;
digitalWrite (STEP, LOW);
delayMicrossconds (1000) ;

1
delay (1000) ;

void turnRight() {
digitalWrite (DIR, HIGH);

Serial.println("Spinning Bnti-Clockwise...

for(int i = 0; i<steps_per rev; i++)
{
digitalWrite (STEP, HIGH);
delayMicrosesconds (1000) ;
digitalWrite (STEP, LOW);
delayMicrosesconds (1000) ;

void turntableWaiting () {
for{int i = 0; i<steps_per_rev; it++)
{
digitalWrite (STEP, LOW);
delayMicroseconds (2000) ;

}
delay (1000) ;

ool limitReached() {
if (digitalRead(LIM 1) && digitalRead(LIM 2}) {
Serial.println("limit not reachesd");
return false;
} el=se {
Serial.println("limit reached");

return true;

void setup() {
// put your setup code here, to run once:
pinMode (BTN, INEPUT); // configures the specified pin to behave either as an input or an output
attachInterrupt (BTN, isr, CHANGE);

pinMode (LED_PIN, CUTPUT); // configures the specified pin to behave either as an input or an output
digitalWrits(LED PIN, LOW); // sets the initial state of LED as turned-off

Serial.begin(115200) ;

ESP32Encoder seInternalWeakPullResistors = UP; // Enable the weak pull up resistors

encoder.attachHalfouad (27, 33); // Attachs pins for use as encoder pins
encoder.setCount (0); // set starting count value after attaching

// configure LED PWM functionalitites
ledcSstup(ledChannel 1, freg, resolution);
ledcSetup(ledChannel 2, freg, resolution);

// attach the channel to the GPIO to bs controlled
ledcAttachPin (BIN_1, ledChannel 1);
ledcattachPin (BIN 2, ledChannsl 2);

pinMode (STEP, CUTEUT);
pinMode (DIR, OUTPUT);

// initialize timer
timer0 = timerBegin (0, 80, true); // timer 0, MWDT clock period = 12.5 ns * TIMGn_Tx WDT_CLK_PRESCALE -> 12.5 ns * 80 -> 1000 ns = 1 us, countUp
timerAttachInterrupt (timer0, &onTime0, true); // edge (not level) triggsred

timerAlarmWrite (timer0, 2000000, trus); // 2000000 * 1 us = 2 s, autoreload true

timerl = timerBegin(l, 80, true); // timer 1, MWDT clock period = 12.5 ns * TIMGn_ Tx WDT_CLK_PRESCALE -> 12.5 ns * 80 -> 1000 ns = 1 us, countUp
timerAttachInterrupt (timerl, &onTimel, true); // edge (not level) triggsred

timerAlarmWrite (timerl, 10000, true); // 10000 * 1 us = 10 ms, autorsload true

// at least enable the timer alarms
timerAlarmEnable (timer0); // snable
timerAlarmEnable (timerl); // =nable
state = 1;

void loop() {
// put your main code here, to run repeatedly:
delay (100);
potReading = analogRead (POT) ;
pot2Reading = analogRead (POT2) ;

switch (state) |
// IDLING

case 1l:

if (PotReadingless() && digitalRead(LIM 1)) { // why does it never

collapse () ;
state = 3;
Serial.println("l to 3");
}
if (PotReadingGreater() && digitalRead(LIM 2)) {
reach () ;
state = Z2;
Serial.println("l to 2");
}
if (TurntablePotReadingLow()) {
turnLeft();
state = 4;
Serial.println("l to 4");
}
if (TurntablePotReadingHigh()) {
turnRight () ;
state = 5;
Serial.println("1l to 5");
}

break;

// RERCHING
case 2:
if (PotReadingSame()) {
waiting () ;
state = 1;
Serial.println("2 to 1");
1

if (PotReadingless() && digitalBead(LIM_ 1)) {
collapse () ;
state = 3;
Serial.println("2 to 3");
}
1f {(limitReached()) {
waiting () ;
state = 1;
Serial.println("2 to 1");
}

break;

// COLLAPSING
cases 3:
if (PotReadingSame()) {
wailting () ;
state = 1;
Serial.println("3 to 1");
}
if (PotReadingGreater() && digitalRead(LIM 2)) {
reach();
state = Z2;
Serial.println("3 to 2");
}
if (limitReached()) {
walting();
=state = 1;
Serial.println("3 to 1");
}

break;

reach this

state?

// TURNING LEFT
case 4:
1if (TurntablePotCentered()) {
turntableWaiting(); // need to update this with waiting for stepper and not brushed dc motor
state = 1;

Serial.println("4 to 1");

// TURNING RIGHT
case 5:
1if (TurntablePotCentered()) {
turntableWaiting () ;
state = 1;

Serial.println("5\

