Micro Metal
Gearmotor

Lid
open/close
button

Personal Storage Bot (Bot-ler)
Abdullah Alhamood, Fahd Althukair, Zachary Douglas

Opportunity:

An occupied hand is something that most people experience as they’re buying groceries,
carrying objects around the house, or holding their coffee mug on their way to work. Our team
brainstormed on how we can fix this common issue to free up our hands during any mundane tasks. To
realize this opportunity, we have chosen to build a personal butler robot that follows you around inside
your house with a small storage area inside of it.

High-Level Strategy:

A thermal camera and Infrared sensors will be integrated and used to follow the person around.
The thermal camera’s data will be processed in our microcontroller to determine whether the user is in
the left, center, or right to guide the path of the robot. The IR sensors will measure the distance in front
of the robot so that it can stop at a certain distance if an object/person is in front of the robot. The robot
uses tri-wheel design, where two wheels are driven by DC motors and a third idling wheel is used for
support. The robot also has a separate transmission system for the lid that can be opened/closed with a
button. Our desired functionality for the robot was to integrate the camera and IR sensors with the
wheels to produce smooth movements. However, due to limitations within the microcontroller and the
sensors’ noise, it was difficult to achieve that goal. Nonetheless, our robot was able to change its
direction depending on where it detected the user. Moreover, its stopping feature was consistent in our
final version as it was able to stop before hitting an object/human. We also wanted the robot to be able
to carry larger objects, but due to constraints with 3D printing and wheel transmission system, we built
a smaller device that can only fit smaller things such as a coffee mug, phones, and wallets. Our robot
was able to achieve the speed that we aimed for (1.5 to 3 m/s) to successfully follow a person who is
walking/jogging.

System Diagrams:

Lid Support

8mm steel 6"
shaft Wheels

I | Ball Bearing

Shaft Coupler

4” Caster
Wheel

IR distance
Sensors
Thermal X
Camera

Figure 1: Lid Transmission System (Left) and Body Sensor Layout (Right)

Cover Lid

Emergency
v Stop Button

Motor-to-
wheel
mounting hub

12V DC
Motor

Body-to-motor
Mounting Bracket

Figure 2: Wheel Transmission System

Function-Critical Decisions:

Wheels:-

Since the motors are directly attached to the hub of the wheels, it is important to ensure that its
shaft does not experience high stress that can break and ruin the motor. For safety, we will assume that
the normal force that each wheel will experience is equal to the full weight of the body.

Weight _ 100 " i
Surface Area 7(0.003)20.014 ~ 250 MPa (Equation 1)

To ensure that our motor shaft is not going to break in extreme cases, the Greartisan DC 12V
motor will be used for the wheels as it possesses a hardened steel shaft which will endure the maximum
stress the motor might experience. Additionally, the torque provided by the motor should be able to
overcome friction experienced by the wheels in order to freely rotate the wheels and move the robot.
With our tri-wheels configuration, the front wheels will approximately experience one fourth of the
weight. Equation 2 is used to determine the friction torque from the ground. With our chosen motor able
to provide 4.5 kg.cm, it will be able to produce enough torque.

Stress =

Friction Torque = WuSR = 25 x0.15 x 0.076 = 0.285Nm = 2.9Kg.cm (Equation 2)

Lid:-

Our Lid mechanism motor will need to support the weight of the lid and be able to rotate the
rotary shaft to close and open the storage lid. The center of mass for the lid will approximately be half
the distance of the lid width which is around 8 cm away from the back. This orientation will create the
highest torque which our motor needs to overcome to be able to open the lid. The total weight of the lid
system is around 0.5 N. The torque needed is computed using Equation 3 which can be created by our
DC gearmotor found in our kit.

Lid Torque = WL = 0.5 x 0.08 = 0.04 Nm = 0.41Kg.cm (Equation 3)

Circuit Diagram:

A - Motor Driver

F - Thermal Camera
= a r G - Capacitor
' - i H- Button
= = I - Resistor

g 3 m"é‘" @ A - Motor
ik ensor .
® D - ESP 32 Microcontroller B - Motor Driver
E - Teensy 4.1 C - ESP 32 Microcontroller
I% Microcontroller ; : D - Button

E - Resistor

o=

©
L] C . | @: v—_—;m

fritzing

s T
fritzing

Figure 3: Robot Circuit (Left) and Lid Opening\Closing Circuit (Right)

Themal Comern = Huma ' mvile. Q obot Ciwde Trancition [Jageas T are e st

and Shphie Vehoce £ st it
an) Sheppiay dikance £ Uttt distmace. Py WVV‘\W‘
[Mwe Gerirard

“Thema| Cumeen = vo Haman

o Gropie Sithunge > Urtemgente Jiskance.
/stop

“Themmal Camera = Homen n milite.
an) Shappiay bishmoge £ UTngenit iskance,
/Mot Gorionrd

P/

Pl w0 vl =) sy |

3. Tibiolization
% N
£ Theomal camern = tomn o0 right
[EASIE S el

Thermel cameca = tomm on [ebt
[Tuen et

g

£ stop

on 7 B r
i al tters .,
o g;‘,"; prush LI
> o e
v

Themal camecn = thomon on cight
Tum cight

Theemal Cameea = torm on L6kt
[Tum 166

Figure 4: State Diagram of the robot

Reflection:

Having a shared group chat and using google drive and documents to work together helped in
easing teamwork. However, in the beginning we were doing duplicate research into the electronics of
the system and were able to finish the electronics before the mechanical systems. We think that
finishing the mechanical system first is important because code debugging takes more time, and you

want a platform to test the electronics after they finish to tune in your code and make it work in time.

Appendix

Bill of Materials:
Item Notes Quantity | Cost Each Total Cost
ESP32 Provided by ME102B 2 0 0
Microcontroller | MicroKit
L298N Motor https://a.co/d/9hiTTyh 1 2.88 2.88
Driver
Teensy 4.1 https://a.co/d/latm4gm 1 45.99 45.99
Microcontroller
Thermal Camera | https://www.adafruit.com/p | 1 74.95 74.95
MLX90640 roduct/4407
Infrared https://a.co/d/4xxQ3Vc 2 8.33 16.66
Proximity
Distance Sensor
USB to Terminal | https://a.co/d/12wT8pC 2 3.5 7
Block Connector
12V/5V Power | https://a.co/d/99d1710 1 28.99 28.99
Bank
Capacitor Provided by ME102B 2 0 0
MicroKit (We used
100uf/10V for the 5V
terminal and 10 uf/25V for
the 12V terminal)
Breadboard Provided by ME102B 2 0 0
MicroKit
Resistor Provided by ME102B 2 0 0
MicroKit (1000 Ohms)
DC Motor Provided by ME102B lab 1 0 0
kit
Greartisan DC https://a.co/d/AZWN3wE 2 14.99 29.98
12V 100RPM

Gear Motor

Gear Motors https://a.co/d/bD43ouY 2 8.99 17.98
Mounting Bracket

3D Printed Body 1 14.84 14.84
3D Printed wheel 2 2.67 5.34
Hub

3D Printed caster 1 3.08 3.08
wheel attachment

Caster Wheel McMaster. #2834T25 1 9.00 9.00
Lid System 1 13.40 13.40
Bracket (laser cut)

Jumper Cables Provided by ME102B 0 0

MicroKit

M5x25mm Bolts | Home Depot Model# 12 1.15 13.8
and Nuts 801378
#8 3 in. Phillips Home Depot 3 9.88 29.64
Bugle-Head

Self-Drilling

Screws
#8 3 in. Phillips Home Depot 1 1.25 1.25
Bugle-Head

Self-Drilling

Screws

Steel Metal Push | https://a.co/d/bdw6k66 1 11.49 11.49
Button

6” Wheel https://www.acehardware.c |2 13.99 27.89

om/departments/lawn-and-
garden/lawn-mowers/lawn-

mower-tires-and-wheels/71
044

Lid Transmission | https://a.co/d/dgrGbQN 26.99 26.99
System (Coupler,
Shaft, Bearings,
Linear Rail
Support)
DRV8833 Dual Provided by ME102B 0 0
Motor Driver MicroKit
Push Button Provided by ME102B 0 0
MicroKit
Cost Sum $381.15

CAD Images:

Software:
You can find the full code (Thermal camera algorithm and test codes for each electronic piece)

at https://github.com/FahdAlthukair/ME102B-FinalProject. The first code screenshots are for

the robot state transition, the second is for the lid:

https://github.com/FahdAlthukair/ME102B-FinalProject

@ FahdAlthukair / ME102B-FinalProject (public

<> Code (® lIssues 9 Pullrequests () Actions [Projects [0OJ Wiki @ Security |~ Insights 3 Settings
¥ main ~ cee

ME102B-FinalProject / software_v4 | software_v4.ino

T3 FahdAlthukair First commit X History

AR 1 contributor

414 lines (371 sloc) 10.8 KB oo

1 #include <Arduino.h>

2 #include <HardwareSerial.h>

3

4 //Thermal camera attributes

5 HardwareSerial MySerial(1);

6 uint8_t arrayCenter = 10;

7

8 //Initialize IR

9 #define IR_PIN_LEFT 26

10 #define IR_PIN_RIGHT 25

11

12

13 //Initialize Motors

14 = #define ENA 13

15 #define IN1 12

16 #define IN2 27

17 #define IN3 33

18 #define IN4 15

19 #define ENB 32

20

21 // setting PWM properties

22 const int MOTOR_PWM_VOLTAGE = 170;
23 const int TURN_PWM_VOLTAGE = 200;
24

25 int stop_distance = 1000;

26 const int STOP_DISTANCE_1 = 1000;
27 const int STOP_DISTANCE_2 = 900;
28

29

30 // current IR distance reading
31 float distance_right = 0;

32 float distance_left = 0;

33

34 // prev IR distance reading

35 float prev_distance_right = 0;
36 float prev_distance_left = 0;

37

38 // Motor timing

39 unsigned long motorCm;
40 unsigned long motorPm;

https://github.com/FahdAlthukair
https://github.com/FahdAlthukair/ME102B-FinalProject
https://github.com/FahdAlthukair/ME102B-FinalProject
https://github.com/FahdAlthukair/ME102B-FinalProject/tree/main/software_v4
https://github.com/FahdAlthukair
https://github.com/FahdAlthukair
https://github.com/FahdAlthukair/ME102B-FinalProject/commit/95d6f3fe81330334131e521e2252b8ec3b77fecb
https://github.com/FahdAlthukair/ME102B-FinalProject/commits/main/software_v4/software_v4.ino
https://github.com/FahdAlthukair/ME102B-FinalProject
https://github.com/FahdAlthukair/ME102B-FinalProject/issues
https://github.com/FahdAlthukair/ME102B-FinalProject/pulls
https://github.com/FahdAlthukair/ME102B-FinalProject/actions
https://github.com/FahdAlthukair/ME102B-FinalProject/projects
https://github.com/FahdAlthukair/ME102B-FinalProject/wiki
https://github.com/FahdAlthukair/ME102B-FinalProject/security
https://github.com/FahdAlthukair/ME102B-FinalProject/pulse
https://github.com/FahdAlthukair/ME102B-FinalProject/settings

41 const unsigned long MOTOR_PERIOD = 100;

42 //

43 //// Thermal timing

44 //unsigned long thermalTimer;

45 //const unsigned long THERMAL_PERIOD = 20;

46

47 //Motor btn setup

48 #define BTN 39 // declare the button pin number
49 = bool motorsOn = true;

50

51 volatile bool buttonIsPressed = false;

52 volatile bool timePassed = true;

53 hw_timer_t x timer = NULL;

54 portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

55

56 void IRAM_ATTR isr() { // the function to be called when interrupt is triggered
57 portENTER_CRITICAL_ISR(&timerMux);

58 buttonIsPressed = true;

59 timePassed = false;

60 portEXIT_CRITICAL_ISR(&timerMux);

61 timerStart(timer);

62

63 }

64

65 void IRAM_ATTR timer_isr() { // the function to be called when interrupt is triggered
66 portENTER_CRITICAL(&timerMux);

67 timePassed = true;

68 portEXIT_CRITICAL(&timerMux);

69 timerStop(timer);

70 timerRestart(timer);

71}

72

73 //Set currentState variable
74 int prevState = 0;
75 int currentState = 0;

76

77 = void setup() {

78 Serial.begin(115200);

79 MySerial.begin(9600, SERIAL_8N1, 16, 17);

80

81 pinMode(IR_PIN_LEFT, INPUT);

82 pinMode (IR_PIN_RIGHT, INPUT);

83

84 pinMode (ENA, OUTPUT);

85 pinMode(IN1, OUTPUT);

86 pinMode(IN2, OUTPUT);

87 pinMode(IN3, OUTPUT);

88 pinMode(IN4, OUTPUT);

89 pinMode (ENB, OUTPUT);

90

91 pinMode (BTN, INPUT);

92 attachInterrupt(BTN, isr, RISING);

93 timer = timerBegin(@, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 = 1,000,000 tics /
94 timerAttachInterrupt(timer, &timer_isr, true); // sets which function do you want to call when the interrupi
95 timerAlarmWrite(timer, 200000, true); // sets how many tics will you count to trigger the interrupt
96 timerAlarmEnable(timer); // Enables timer

97

98

99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

// //Thermal Timer
// thermalTimer = millis() + 50;

void loop() {

// Serial.print("current state: ");

// Serial.println(currentState);
switch (currentState) {

//Idling state. Waiting to see human or to get a button press
case 0:
//Check to see if the 1lid button is pressed to open
if (checkMotorButton()) {
//Move to motor closing state
buttonIsPressed = false;
prevState = 0;
currentState = 4;
}
//Check to see if human is in the center with enough distance to follow
else if (checkHumanCenter()) {
//Move to following state
prevState = 0;
currentState = 1;
startMotors();
}
//Check to see if human is on the right side
else if (checkHumanRight()) {
//Move to the turning right state
prevState = 0;
currentState = 2;
startMotors();
}
//Check to see if human is on the left side
else if (checkHumanLeft()) {
//Move to turning left state
prevState = 0;
currentState = 3;
startMotors();

}

prevState = 0;

break;
//Following state. Move forward to follow human
case 1:

//Check to see if the 1lid button is pressed to open
if (checkMotorButton()) {
//Move to lid opening state
buttonIsPressed = false;
prevState = 1;
currentState = 4;
}
//Check to see if human is on the right side
else if (checkHumanRight()) {
//Move to the turning right state
prevState = 1;
currentState = 2;
}
//Check to see if human is on the left side
else if (checkHumanLeft()) {
//Move to turning left state

161 prevState = 1;

162 currentState = 3;

163 +

164 //Check to see if human is no longer at the center or not at an accepted distance
165 else if (checkHumanCenter() == false) {

166 //Stop motors and move to idling state

167 prevState = 1;

168 currentState = 0;

169 stopMotors();

170 b

171 else {

172 //If none of the previous event checkers were triggered move forward
173 moveForward();

174 }

175 prevState = 1;

176 break;

177 //Turning right state. Turn right until human is in the middle

178 case 2:

179 //Check to see if the 1lid button is pressed to open

180 if (checkMotorButton()) {

181 //Move to lid opening state

182 buttonIsPressed = false;

183 prevState = 2;

184 currentState = 4;

185 }

186 //Check to see if human is in the center with enough distance to follow
187 else if (checkHumanCenter()) {

188 //Move to following state

189 prevState = 2;

190 currentState = 1;

191 }

192 //Check to see if human is on the left side

193 else if (checkHumanLeft()) {

194 //Move to turning left state

195 prevState = 2;

196 currentState = 3;

197 ¥

198 //Check to see if human is no longer at the right after checking if human is in the center
199 else if (checkHumanRight() == false) {

200 //Stop motors and move to the idling state

201 prevState = 2;

202 currentState = 0;

203 stopMotors();

204 } else {

205 //If none of the previous event checkers were triggered turn right
206 turnRight();

207 }

208 prevState = 2;

209 break;

210 //Turning left state. Turn left until human is in the middle

211 case 3:

212 //Check to see if the 1lid button is pressed to open

213 if (checkMotorButton()) {

214 //Move to lid opening state

215 buttonIsPressed = false;

216 prevState = 3;

217 currentState = 4;

218 }

219 //Check to see if human is in the center with enough distance to follow

220 else if (checkHumanCenter()) {

221
222
223
224
225
226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

//Move to following state
prevState = 3;
currentState = 1;
}
//Check to see if human is on the right side
else if (checkHumanRight()) {
//Move to the turning right state
prevState = 3;
currentState = 2;
}
//Check to see if human is no longer at the left after checking if human is in the center
else if (checkHumanLeft() == false) {
//Stop motors and move to idling state.
prevState = 3;
currentState = 0;
stopMotors();
} else {
//1f none of the previous event checkers were triggered turn left
turnLeft();
}
prevState = 3;
break;
//Stop Motor State. Stop the motors until the button is pressed again.
case 4:
//Check to see if motors are on
if (motorsOn) {
//Stop motors
stopMotors();
motorsOn = false;
}
//Check to see if the motor button is pressed to start motors
if (checkMotorButton()) {
//Start motors and go back to idling state
prevState = 4;
currentState = 0;
buttonIsPressed = false;
startMotors();
motorsOn = true;
}
prevState = 4;
break;
default:
Serial.println("Robot Error");
break;

delay(100);

bool checkMotorButton() {
if (buttonIsPressed && timePassed) {
Serial.println("Button is pressed");
return true;
b

return false;

281
282
283
284
285
286
287
288
289
290
291
292
293

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

bool checkHumanCenter() {
//Read from thermal camera
thermalRead();
readIR();
if (arrayCenter > 2 && arrayCenter < 7 || (arrayCenter == 10) && (distance_left > 400 || distance_right > 40¢
if (distance_left < stop_distance && distance_right < stop_distance) {
stop_distance = STOP_DISTANCE_1;
return true;

+
else {
//Serial.println("Returned false due to stopping distance");
stop_distance = STOP_DISTANCE_2;
return false;
¥
¥

return false;

bool checkHumanRight() {
thermalRead();
if (arrayCenter < 3) {
readIR();
if (distance_left < stop_distance && distance_right < stop_distance) {
stop_distance = STOP_DISTANCE_1;
return true;

+
else {
//Serial.println("Returned false due to stopping distance");
stop_distance = STOP_DISTANCE_2;
return false;
¥
¥

return false;

bool checkHumanLeft() {
thermalRead();
if (arrayCenter != 10 && arrayCenter > 6) {
readIR();
if (distance_left < stop_distance && distance_right < stop_distance) {
stop_distance = STOP_DISTANCE_1;
return true;

+
else {
//Serial.println("Returned false due to stopping distance");
stop_distance = STOP_DISTANCE_2;
return false;
¥
¥

return false;

void stopMotors() {
motorCm = millis();
if (currentState != prevState &% motorCm > motorPm + MOTOR_PERIOD) {
Serial.println("Stopping Motors");

digitalWrite(IN1,LOW);

digitalWrite(IN2,LOW);

digitalWrite(IN3,LOW);

digitalWrite(IN4,LOW);

341 motorPm = motorCm;

342 h

343

344 }

345

346 = void moveForward() {

347 motorCm = millis();

348 if (currentState != prevState && motorCm > motorPm + MOTOR_PERIOD) {
349 Serial.println("Moving Forward");

350 analogWrite(ENA, MOTOR_PWM_VOLTAGE);

351 analogWrite(ENB, MOTOR_PWM_VOLTAGE);

352 motorPm = motorCm;

353 +

354}

355

356 void turnRight() {

357 motorCm = millis();

358 if (currentState != prevState && motorCm > motorPm + MOTOR_PERIOD) {
359 Serial.println("Turning Right");

360 // analogWrite(ENA, MOTOR_PWM_VOLTAGE);
361 // analogWrite(ENB, TURN_PWM_VOLTAGE);

362 analogWrite(ENA, 0);

363 analogWrite(ENB, TURN_PWM_VOLTAGE);

364 motorPm = motorCm;

365 ¥

366 ¥

367

368 void turnLeft() {

369 motorCm = millis();

370 if (currentState != prevState &% motorCm > motorPm + MOTOR_PERIOD) {
371 Serial.println("Turning left");

372 // analogWrite(ENA, TURN_PWM_VOLTAGE);
373 // analogWrite(ENB, MOTOR_PWM_VOLTAGE);

374 analogWrite(ENA, TURN_PWM_VOLTAGE);
375 analogWrite(ENB, 0);

376 motorPm = motorCm;

377 ¥

378 }

379

380 void startMotors() {

381 motorCm = millis();

382 if (currentState != prevState && motorCm > motorPm + MOTOR_PERIOD) {
383 Serial.println("Starting Motors");
384 digitalWrite(IN1,HIGH);

385 digitalWrite(IN2,LOW);

386 digitalWrite(IN3,HIGH);

387 digitalWrite(IN4,LOW);

388 motorPm = motorCm;

389 ¥

390 ¥

391

392 void thermalRead() {

393 if (MySerial.available() > 0) {

394 arrayCenter = MySerial.read();

395 // thermalTimer += THERMAL_PERIOD;
396 Serial.print("Array center is: ");
397 Serial.println(arrayCenter);

398 // Serial.println();

399 // Serial.print("Array center is: ");

400 // Serial.println(arrayCenter);

401
402
403
404
405
406
407
408
409
410
411
412
413
414

// Serial.println();
}

void readIR() {

distance_right = 0;

distance_left = 0;

for (int i = 0; i < 25; i++) {
distance_right += analogRead(IR_PIN_RIGHT);
distance_left += analogRead(IR_PIN_LEFT);

}

distance_right /= 25;

distance_left /= 25;

1 fdefine BIN_1 26

2 #define BIN_2 25

3 #define LED_PIN 13

4 const int buttonPin = 14;
5 int red = 0;

6

7 int blue = 0;

8

9

10 int buttonState = 0;
11
12 // declare timer variables ------------—--——-—-co——-
13 unsigned long currentTime = 0;
14 unsigned long lastCycleTime = 0;

15 unsigned long lastStepTime = 0;

16 const int cycleDuration = 4@00; // duration of full cycle in ms
17

18 // setting PWM properties ------------—-—---commo—-

19 const int freq = 5000;
20 const int ledChannel_1
21 const int ledChannel_2 =
22 const int resolution = 8;
23 int MAX_PWM_VOLTAGE = 255;
24

25 void setup(Q) {

26 pinMode(LED_PIN, OUTPUT);t

27 digitalWrite(LED_PIN, LOW);

28 pinMode(buttonPin, INPUT);

29 Serial.begin(115200);

30

31

32 ledcSetup(ledChannel_1, freq, resolution);
33 ledcSetup(ledChannel_2, freq, resolution);
34

35

36 ledcAttachPin(BIN_1, ledChannel_1);

37 ledcAttachPin(BIN_2, ledChannel_2);

38

39 lastCycleTime = millisQ;

Il
[a=y
-

39 lastCycleTime = millisQ;

40 lastStepTime = millisQ);

41

42}

43

44 void loopQ) {

45 buttonState = digitalRead(buttonPin);

46 currentTime = millisQ;

47

48 // The state of the 1id is called red. This event checker first checks to see the state of red, if it is below 1 then the lid is closed. if it is above 1 then the 1lid is open.
49 // then the event checker checks to see if the button has been pressed, if it has been pressed it then it performs the action of turning the motor!

50 if (red < 1){
51 if(buttonState == HIGH){

52

53 // turn LED on:

54 ledcWrite(ledChannel_1, MAX_PWM_VOLTAGE);
55 ledcWrite(ledChannel_2, LOW);

56 Serial.println("LID OPEN");
57 delay(1100);

58 // turn LED off:

59 red = red+2;

60 H

61

62 ledcWrite(ledChannel_1, LOW);

63 ledcWrite(ledChannel_2, LOW);

64

65 delay(1000);

66 buttonState = digitalRead(buttonPin);
67

68

69 1}

70 // event checker to see if the lid is open, and if it is then to see if the button has been pressed!
71

72 if (red > 1);{
73 if(buttonState == HIGH){

74
75 // turn LED on:
76 ledcWrite(ledChannel_1, LOW);

77 ledcWrite(ledChannel_2, MAX_PWM_VOLTAGE);

66 buttonState = digitalRead(buttonPin);

67

68

69 11}

70 // event checker to see if the lid is open, and if it is then to see if the button has been pressed!
71

72 if (red > 1);{

73 if(buttonState == HIGH){

74

75 // turn LED on:

76 ledcWrite(ledChannel_1, LOW);
77 ledcWrite(ledChannel_2, MAX_PWM_VOLTAGE);
78

79 delay(1100);

80 // turn LED off:

81 red = red-2;

82 5

83

84 ledcWrite(ledChannel_1, LOW);
85 ledcWrite(ledChannel_2, LOW);

86 Serial.println("LID CLOSED");
87 delay(1000);

88 buttonState = digitalRead(buttonPin);
89

20

91 1

92

93

94

95

9%

97

98

929

100

101

102 %

103

104

