Perfect Beer Pour Bot
Nana Porter-Honicky, Jun Yeob Lee, Alexandr Nechay, Hayden Ye

Opportunity

It is often hard for people to pour the perfect glass of beer. It requires an amount of
dexterity and timing that many people do not have the patience for and even when someone
does achieve the perfect pour it can be hard to replicate. With our Perfect Beer Pour machine,
we aim to make this task easy and consistent.

High Level Strategy

The main functionality that we wanted to achieve with this machine was replicating the
path a bartender would go through when pouring a glass of beer so we could have the perfect
beer pour. Initially, we wanted to use a weighted sensor to tell the machine when to stop pouring
the beer in addition to changing the angle of the glass to match the perfect pour angle. While
our realized product does change the angle of the glass as well as imitates the human motion of
pouring a beer, it does not use a weighted sensor, and instead uses limit switches to tell the
machine when to stop moving the bottle. We also initially thought of using a linear actuator to
pull the bottle up its path but switched to a linkage mechanism for simplicity. With our linkage
mechanism driving the path of the bottle and our smaller motor doing a Pl control of the cup, we
were able to achieve our perfect beer pour.

Photos of Physical Device

Function Critical Decisions

For the motor selections, the worst-case scenario is estimated, where the filled beer
bottle is 556g. The length of the moment arm is measured to be 34.2cm. The calculated
maximum torque is 0.556*34.2 = 19.0152 (kg*cm). Considering the friction which cannot be
measured in the design phase, with the linkage power loss, fixture weight, and the extra load
caused by the misalignment of the shaft, a conservative estimation is 50% higher. Therefore,

the conservative maximum torque required would be 28.52 kg*cm. The unit kg*cm is used
instead of Nm because the motor datasheets usually use kg*cm and Ibs*in. Based on this
measurement, the compact square-face DC gear motor is selected (24V, 47rpm, 28 in-lbs or
32.26 kg*cm). This motor is sufficient to power the fully loaded linkage, in sacrifice of the
rotational speed. By estimating the motion speed in the manual perfect pouring video, an ideal
speed would be around 120 deg/sec, around 20 rpm, which is half of its no-load speed.
Therefore, this motor (McMaster ID: 6409K27) has an ideal balance between torque output and
flexibility in rotating speed.

Also, the square compact motor has its own metal housing and bearing for the shaft,
with an overhung load of 13Ib, which is
nearly 10 times larger than the possible
radial load in operation.

For the jar-motor system, we
calculated the maximum torque on the
bearing of the system using the average
weight of the jar, Fjar = 0.443*9.8=4.341
N. The average weight center of the jar
was estimated at a 2cm horizontal
distance away from the bearing. Using a
conservative estimation, the maximum
torque was calculated as Tjar =
1.5*4.341*2 = 13.023 N-cm = 1.327
kg-cm. The torque is less than half of that of the bottle-motor system, allowing us to use a motor
within a reasonable price range.

Fbearing

o
Tjar
(@]

Fjar

Based on the torque estimation, we selected Pololu #4757, with 3.0kg*cm stall torque
and 1600 rpm no-load speed. In this case, a
motor housing needs to be designed to

protect the motor shaft. After inputting the ks ra
housing dimensions, a free body diagram of R3 R4 |
the housing shaft is drawn as follows.

To calculate the bearing forces R3 '
and R4, the free body diagram is drawn as 1275mm | 63.5mm ,
shown above. The force and moment
balance equations are used to solve for the
reaction forces. Summing moment of the

system:
4341 x 154775 —R3 X 635 =0

Fjar Fjar

R3 = 10.58N

R4 =4.341 - 10.58 = —6.24N

Both of these radial loads are far smaller than the load tolerance of bearing (57155k305), having
330lbs dynamic load capacity and 120lbs static load capacity.

Reflection
We should have considered fabricating more prototypes instead of assuming that our
final fabricated part will be perfect and be exactly what we wanted. Doing more prototypes

would have allowed us to see the flaws in our design and would have saved us time that we
instead spent trying to reconfigure or fix parts that we ended up replacing anyway. Additionally,
we should have anticipated that when combining the code and the actual physical machine,
there could be some flaws and errors. We should have allowed more time for us to debug and
fix that instead of figuring out that there were problems at the last minute. We also should have
used a motor with an encoder to drive the bottle linkage for a more precise motion. Overall, the
project opened our eyes to how all these different aspects of engineering that we have learned
about in separate classes come together to create a single physical thing. It was also interesting
to learn how many aspects come into building something on a tight budget.

Circuit Diagram

Bottle Motor Driver
ouT3 ouTlp ESP32
0 ouT4 ouTZ = v 1 &
mz GHO ?
= v
T | I Bt SE
+5\, GND — éN Lo ol 10kQ
[g
Cup Moto Ve 14 s
|_ :\L’r. Mator Driy l\ J e 12 s
—iﬁ‘-f Ellf{l? $ %é %é - Limit Switch 1
N 2 -z]
- “jz - PIN1
+12V = . ot GHD |~ ::2 (GND)
T ncoded Motor — 3
ENCI1(RED) ouTl SH}E C
ENC2(BLACK) ouTtz
1ICA(BLUE)
EMCS(YELLOW) B
ENCE(WHITE) | Limit Switch 2
PIN1
PINZ (GND)
—{ PINZ
47kQ
State Transition Diagram
Button
ressed/) .
:‘Iove bottle Actuating Limit switch 1
! df
Move glass > presse
g Freeze bottle,
Freeze glass, Start
timer
Idling
-
b
') Hold
Button Time = Timeout/
pressed/ Retract bottle, Stop
Retract glass Beer Read & reset Timer
eer Ready
- o
-) ! Pouring
Limit Switch End Button pressed/
2 pressed/ - Retract bottle, Stop

Freeze bottle & reset Timer

Appendix A: Bill of Materials

Name

Flanged Ball Bearing

Belleville Disc Spring
for Ball Bearings

316 Stainless Steel
Round Shim

One-Piece Clamp-On
Shaft Collar

Miniature Drive Shaft
(v4', 4’ long)

Helical Flexible Shaft
Coupling

Set Screw Shaft
Coupling

Metal Gearmotor
37Dx65L mm 12V
with 64 CPR Encoder
(Helical Pinion

Quantity

2

Cost
per unit

6.42

3.76 for 10

8.63 for 10

3.43

4.49

59.97

61.34

51.95

Part No.

57155K305

94065K26

97022A372

6435K12

1327K114

2464K2

98617722

4757

Link

https://www.
mcmaster.co
m/flanged-bal
I-bearings/fla
nged-ball-bea
rings-7/

https://www.
mcmaster.co
m/catalog-12
8%2f1441/

https://www.
mcmaster.co
m/catalog-12
8%2f3568/

https://www.
mcmaster.co
m/catalog-12
8%2f1359/

https://www.
mcmaster.co
m/catalog-12
8%2f1263/

https://www.
mcmaster.co
m/catalog-12
8%2f1374/

98617722
https://www.
mcmaster.co
m/9861t722/

https://www.p
ololu.com/pro
duct/4757

Compact
Square-Face DC
Gearmotor

Flanged screw (M3
6mm)

Laser acrylic panels

Formlabs -
Engineering - Tough
2000 Resin - Form3
Print Material (priced
per ml)

Washer (M5)

Screw
14mm)

(M5*0.8

Hex nut (M5*0.8)

Spacer: Male-female

standoff (51mm,
M5*0.8)

6063 Aluminum
Low-Profile Binding

Barrels and Screws,

About 1000ml

16

62.74

5.04 for 100

22.00

.21 per mi

4.00 for 100

10.01 for 25

4.05 for 100

6.00

17.03 for 50

6409K27

97654A674

N/A

N/A

98689A114

92095a211

90592A095

98952A430

93121A337

6409K27
https://www.
mcmaster.co
m/6409K27/

https://www.
mcmaster.co
m/catalog-12
8%2f3327/

Machined

https://store.j
acobshall.org
/products/for
mlabs-engine
ering-tough-2
000-resin-for
m3-print-mat
erial-priced-p
er-ml

https://www.
mcmaster.co
m/catalog-12
8%2f3544/

https://www.
mcmaster.co
m/92095a211
/

https://www.
mcmaster.co
m/90592A09
5/

https://www.
mcmaster.co
m/catalog-12
8%2f3595/

https://www.
mcmaster.co
m/93121A33
7/

8-32 Thread Size, for
5/8"-7/8" Material
Thickness
3 12.51 for 25

063 Aluminum
Low-Profile Binding
Barrels and Screws,
8-32 Thread Size, for
1-1/4"-1-1/2" Material
Thickness
2 5.99 for 10

Limit Switches

20 cm Steel ¥2-13 rod

2 10.86

17cm steel 347 pipe

Heat sets
6 12.60 for 10

¥-13 hex nuts

93121A350

N/A

99065A402

7750K112

94575A470

https://www.
mcmaster.co
m/93121A35
o/

https://www.a
mazon.com/
HiLetgo-KW1
2-3-Roller-Sw
itch-Normally/
dp/B07X142
VGC/ref=sr_
1_1_sspa?cri
d=20CDBJN
FOX101&key
words=limit+s
witch&qid=16
68031870&s
prefix=limit+s
witc%2Caps
%2C225&sr=
8-1-spons&p
sc=1

https://www.
mcmaster.co
m/99065A40
2

https://www.
mcmaster.co
m/7750K112

https://www.
mcmaster.co
m/94575A47
0

PLA cup holder

PLA bottle holder

PLA secondary
linkage

PLA DC motor
housing

8mm Flange couplers
connector

Total: $419.40

Appendix B: CAD

6.12

3.20

5.59

7.34

9.99 for 2

N/A

N/A

N/A

N/A

N/A

3D Printed

3D Printed

3D Printed

3D Printed

https://www.a
mazon.com/d
p/B0822425T
T/ref=cm_sw
_r_api_i 9M
NQYJ44M8D
3SWWPG6K7
P_0?_encodi
ng=UTF8&ps
c=1

Appendix C: Code

#include <ESP32Encoder.h>
#include <Arduino.h>
#define BTN 13 //Button to be manually pressed by user

#define BIN_1 26 //Motor encoder pin motor B (bottle) enable pin, direction contreolled by dir3 dir4

#define BIN_2 25 //Motor encoder pin motor A (cup) enable pin, dirrection controlled by dirl dir2

#define SWITCH1 12 // Limit switch at final bottle position
#define SWITCH2 15 // Limit switch at initial bottle position
#define dirl 14 //motor driver input 1, motor A direction control
#define dir2 32 //motor driver input 2, motor A direction control
#define dir3 17

#define dir4 16 //motor driver input 4, motor B direction control

#define POT 4 //analog input: potentiometer to control motor B (bottle) velocity

ESP32Encoder encoder;

//Setup variables ————————————————————————————————————
int state = 1; //State of the bottle-glass system

int sumerror = 0;

int theta = 0:

int thetaDes = 0; //the 10 times of desired theta

int thetaMax = 455; // 75.8 * & counts per revolution
int D cup = 0; // PWM of the cup motor

int D = 0; //PWM for bottle motor

int potReading = 0;

int Kp = 50;
float Ki = 2;
int KiMax = 50;

// TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE

//8etup interrupt wvariables ——————————— - ———————
volatile bool buttonflag = false;
volatile bool switchflagl = false;
volatile bool switchflag2 = false;

volatile bool timeoutflag = false;
volatile bool interruptCounter = false;
hw_timer t * TimeoutTimer = NULL;

portMUX_TYPE timeoutMux = portMUX_ INITIALIZER_UNLOCKED;

volatile int count = 0; // encoder count

volatile bool cupflag = false; // check timer interrupt
hw_timer_t * cuptimer = NULL;

portMUX_TYPE cuptimerMux = portMUX INITIALIZER UNLOCKED;

hw_timer t * debounceTimer = NULL;
portMUX TYPE debounceMux = portMUX INITIALIZER UNLOCKED;

// setting PWM properties —
const int freq = 5000;

const int ledChannel 1 = 1; //Assumed that we are using a second e3p32 board. Change the value if

using one board

const int ledChannel_2 = 2; //Assumed that we are using a second esp32 board. Change the value if using one board

const int resolution = 8;
const int MAX PWM VOLTAGE = 255;

//Initialization - -
void TRAM ATTR isr() |
buttonflag = true;

void IRAM ATTR isr2 () |
switchflagl = true;
interruptCounter = true;

timerStart (debounceTimer) ;

void IRAM ATTR isr3() |
switchflag2 = true;
interruptCounter = true;
timerStart (debounceTimer) ;
}
void IRAM ATTR isr4() { //for debounce
buttonflag = true;
interruptCounter = true;

timerStart (debounceTimer) ;

void IRAM ATTR onTimeout () { // the function to be called when Timeout interrupt is triggered
//portENTER_CRITICAL_ISR(&timeoutMux);
timeoutflag = true;

timerStop (TimeoutTimer) ;
timerRestart (TimeoutTimer) ;
//pOItEXITicRITICALilsR(&timeoutMux);
}
void TimeoutInterruptInit () {
TimeoutTimer = timerBegin (0, 80, true);
timerAttachInterrupt (TimeoutTimer, &onTimeout, true);
timerAlarmWrite (TimeoutTimer, 5000000, true);
timerAlarmEnable (TimeoutTimer) ;
timerStop (TimeoutTimer); //Timer is stopped initially, until it's called to start

void IRAM ATTR onCupTime () {
POTrtENTER_CRITICAL_ ISR (&cuptimerMux) ;

count = encoder.getCount();
encoder.clearCount ();
cupflag = true; // the function to be called when timer interrupt is triggered

POortEXIT CRITICAL ISR (&cuptimerMux):;

void IRAM ATTR onDebounceTime () {
POrtENTER CRITICAL_ISR(&debounceMux) ;
timerStop (debounceTimer) ;
interruptCounter = false; // the function to be called when timer interrupt is triggered
POrtEXIT CRITICAL_ ISR (&debounceMux);

}

void TimerInterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 80MHz, we will have 80
debounceTimer = timerBegin (2, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 = 1,000,000 tics / sec
timerAttachInterrupt (debounceTimer, &onDebounceTime, true); // sets which function do you want to call when the interrupt is triggered
timerAlarmWrite (debounceTimer, 400000, true); // sets how many tics will you count to trigger the interrupt 50000
timerAlarmEnable (debounceTimer); // Enables timer

void setup() {
// put your setup code here, to run once:
pinMode (BTN, INPUT); // configures the specified pin to behave either as an input or an output
attachInterrupt (BTN, isrd, RISING);
pinMode (SWITCH1, TINPUT) ;
attachInterrupt (SWITCHL, isr2, RISING);:
pinMode (SWITCH2, TINPUT) ;
attachInterrupt (SWITCH2, isr3, RISING);:
pinMode (dirl, OUTPUT) ;
pinMode (dir2, OUTPUT): // digital output, control motor A's direction, cup
pinMode (dir3, OUTPUT) ;
pinMode (dir4, OUTPUT); // digital output, control motor B's direction, bottle
pinMode (POT, INPUT); //potentiometer analog input, control motor B's speed, bottle
Serial.begin(115200);

ESP32Encoder: :useInternalWeakPullResistors = UP; // Enable the weak pull up resistors
encoder.attachHalfQuad (33, 27); // Attache pins for use as encoder pins
encoder.setCount (0); // set starting count value after attaching

// configure LED PWM functionalitites
ledcSetup (ledChannel 1, freq, resolution);
ledcSetup (ledChannel 2, freq, resolution);

// attach the channel to the GPIO to be controlled
ledcAttachPin (BIN_1, ledChannel 1);
ledcAttachPin(BIN_2, ledChannel 2);

// initilize timer
TimeoutInterruptInit(); // Initiates timout timer interrupt
TimerInterruptInit () ;

cuptimer — timerBegin(l, 80, true); // timer 1, MWDT clock period — 12.5 ns * TIMGn_Tx_WDT_CLK_PRESCALE -> 12.5 ns * 80 —> 1000 ns = 1 us, cou
timerAttachInterrupt (cuptimer, &onCupTime, true); // edge (not level) triggered
timerAlarmWrite (cuptimer, 10000, true); // 10000 * 1 us = 10 ms, autoreload true

// at least enable the timer alarms
timerAlarmEnable (cuptimer); // enable

void loop () {
delay (100);
potReading = analogRead (POT) ;
D = map (potReading, 0, 4095, 0, 255);//absolute speed for bottle motor
switch (state) {
case 1l: // STATE 1: IDLING
glassretract ()
switchflagl false;
switchflag2 = false;

if (CheckButton() == true) { // If button is pressed, drive the bottle motor forward
Serial.println("button triggered, state 1 to 2, current state 2: actuating"):;
Serial.println("™ -- service: glassretract(), bottlemove()"):
bottlemove () ; //Turn on the motor until bottlefreeze() is called
state = 2;

}

break;

case 2: //STATE 2: ACTUATING
glassmove () ;
buttonflag = false;
switchflag2 = false;

//glassmove () ; //Turn on the motor until bottlefreeze() is called

if (CheckSwitchl() == true) { //If limit switch is pressed by the bottle, then freeze the bottle motion and start Timeout Timer
Serial.println("switch triggered, state 2 to 3, current state 3: hold");
Serial.println(" -- service: glassfreeze(), bottlefreeze(), timerStart()"):

//glassfreeze () ;
bottlefreeze () ;
timerStart (TimeoutTimer) ;
state = 3;

}

break:;

case 3: //STATE 3: HOLD

switchflagl = false;

switchflag2 = false;

if (CheckTimeout() == true) { //If Timer reaches Timeout, then retract the bottle and stop Timeout Timer
Serial.println("state 3 to 4, current state 4 pouring end: triggered by timeout™);
Serial.println(" -- service: bottleretract(), timerStop(), timerRestart()/i.e. reset");
bottleretract() ;
//timerRestart and timer stop included in isr
state = 4;

¥

else if (CheckButton() == true) { //If Button is pressed manually by the user, then retract the bottle and stop Timeout Timer
Serial.println("state 3 to 4, current state 4 pouring end: triggered by button manually");
Serial.println(" -- service: bottleretract(), timerStop(), timerRestart()/i.e. reset");
bottleretract() ;
timerRestart (TimeoutTimer) ;
timerStop (TimeoutTimer) ;
state = 4;

}

break;

case 4: //STATE 4: POURING END

glassfreeze () ;

switchflagl = false; //In case the switchl is pressed in state 4 due to misoperation, turn off flag manually
buttonflag = false;
if (CheckSwitch2() == true) { //If the Limit switch is pressed by the bottle after retracting, then freeze the bottle motion
Serial.println("state 4 to 5, current state 5 beer ready"):;:
Serial.println(" -- service: bottlefreeze()");
bottlefreeze();
state = 5;
}
break;
case 5: //STATE 5: BEER READY
switchflagl false;
switchflag2 = false;
if (CheckButton() == true) { //If Button is pressed by the user after the beer is taken out, then reset the bottle to initial position

Serial.println("state 5 to 1, current state 1 idling");
Serial.println("/-—--—-—--————= One cycle ended-———-—————————— /"y
Serial.println("Please place new beer bottle and empty cup");
state = 1;

¥

break;

bool CheckButton() { //Event Checker 1: Check if button is pressed by checking the button flag
if (buttonflag == true && interruptCounter==false){
buttonflag = false;
return true;
i3
else {
return false;

bool CheckSwitchl() { //Event Checker 2: Check if the limit switch at final bottle position is pressed.
if (switchflagl == true && interruptCounter==false){
switchflagl = false;
return true;

i3
else {

return false:;
i3

bool CheckSwitch2() { //Event Checker 3: Check if the limit switch at the initial bottle position is pressed.
if (switchflag? == true && interruptCounter==false) {
switchflag2 = false;
return true;
i3
else {
return false;

bool CheckTimeout() { //Event Checker 3: Check if time has passed until Timeout by checking the timeout flag
if (timeoutflag == true) {
POrtENTER CRITICAL ISR (&timeoutMux);
timeoutflag = false; // the function to be called when timer interrupt is triggered
POrtEXIT CRITICAL_ ISR (&timeoutMux);
return true;
¥
else {

return false;

void glassmove () {
if (cupflag) {
POTrtENTER_CRITICAL (écuptimerMux) ;
cupflag = false;
PortEXIT CRITICAL(&cuptimerMux) ;

theta += count;
if (thetaDes > -40){
Serial.print ("Desired position of cup:");
Serial.println(thetaDes/10);
thetaDes -= 8; // cup's orientation varies from 45 degrees to 90 degrees, with respect to the horizontal (thetaDes = thetaMax/8 = 455/8)
}
int thetaD = thetaDes/10;
sumerror += thetaD - theta;
if (sumerror > KiMax) {
sumerror = KiMax;
}else if (sumerror<-KiMax)
{
sumerror = -KiMax;
}
D_cup = Kp* (thetaD-theta)+Ki*sumerror; //PI Control of the cup

//Ensure that you don't go past the maximum possible command
if (D _cup > MAX PWM VOLTAGE) {
D cup = MAX PWM VOLTAGE;
3
else if (D_cup < -MAX_PWM VOLTAGE) {
D cup = -MAX PWM VOLTAGE;

//speed magnitude control
ledcWrite (ledChannel 2, abs(D_cup));

//Map the motor directionality

//control dirl and dir2

if (D_cup > 2) {
digitalWrite (dirl, LOW):;
digitalWrite (dir2, HIGH);

}

else if (D_cup < -2) {
digitalWrite (dirl, HIGH):;
digitalWrite (dir2, LOW):;

}

else {
digitalWrite (dirl, LOW);
digitalWrite (dir2, LOW):;

void glassretract () {

if (cupflag) {
portENTERicRITICAL(&cuptimerMux);
cupflag = false;

POTtEXIT_CRITICAL (&cuptimerMux) ;

theta += count;
thetaDes = 80;
int thetaD = thetaDes/10;
sumerror += thetaD - theta;
if (sumerror > KiMax) {
KiMax;
}else if (sumerror<-KiMax)
{

sumerror =
¥
D_cup = Kp* (thetaD-theta)+Ki*sumerror; //PI

sumerror =

-KiMax;

//Theta decreases from 90 degrees to 45 degrees
// cup's orientation varies from 90 degrees to 45

degrees, with respect to the horizontal (thetaDes

Control of the cup

-thetaMax/8

~455/8)

//Ensure that you don't go past the maximum possible command

if (D_cup > MAX PWM VOLTAGE) {
D cup = MAX PWM VOLTAGE;:

}

else if (D_cup < -MAX PWM VOLTAGE)

D cup = —MAX_PWM_VOLTAGE;

//speed magnitude control

ledcWrite (ledChannel 2, abs(D_cup)):

//Map the motor directionality

//control dirl and dir2

if (D_cup > 2) {
digitalWrite(dirl,
digitalWrite(dir2,

}

else if (D_cup < -2) {
digitalWrite(dirl, HIGH);
digitalWrite(dir2, LOW);

}

else {
digitalWrite(dirl,
digitalWrite(dir2,

LOW) ;
HIGH) ;

LOW) ;
LOW) ;

}

void glassfreeze() {

D cup = 0;
digitalWrite(dirl, LOW);
digitalWrite (dir2, LOW);

void bottlemowve ()

//D = 255; // CHOSEN BOTTLE MOTOR VOLTAGE VALUE
if (D > MAX PWM VOLTAGE)
D = MAX_ PWM VOLTAGE;
}
else if (D < -MAX PWM VOLTAGE) {
D = -MAX PWM_VOLTAGE;

Serial.print ("PWM setting
Serial.println(D);

(0~255)

//speed magnitude control
ledcWrite (ledChannel 1, abs(D));

for bottle motor is:

{ //Service Function moving bottle from initial rest position (Open Loop Control)

(CHANGE SIGN & MAGNITUDE IF NECESSARY)

{ //Ensure that you don't go past the maximum possible command

")

//Map the motor directionality

//control dir3 and dir4

if (D > 0) {
digitalWrite(dir3, LOW);
digitalWrite(dir4, HIGH);

}

else if (D < 0) {
digitalWrite(dir3, HIGH);
digitalWrite(dir4, LOW);

}

else {
digitalWrite(dir3, LOW);
digitalWrite(dir4, LOW);

void bottlefreeze() {
D= 0;
ledcWrite (ledChannel 1, D);
digitalWrite (dir3, LOW):;
digitalWrite (dir4, LOW):;

void bottleretract () {
//D = -255; // CHOSEN BOTTLE MOTOR VOLTAGE VALUE (CHANGE SIGN & MAGNITUDE IF NECESSARY)
D = -100;
Serial.print ("PWM setting (0~255) for bottle motor is: "):
Serial.println(D);
/*if (D > MAX PW

P/

//speed magnitude control
ledcWrite (ledChannel 1, abs(D));

//speed magnitude control
ledcWrite (ledChannel 1, abs(D));

//Map the motor directionality
//control dir3 and dir4
if (D > 0) {
digitalWrite (dir3, LOW);
digitalWrite (dir4, HIGH);
}
else if (D < 0) {
digitalWrite (dir3, HIGH):
digitalWrite (dir4, LOW):;
}
else {
digitalWrite (dir3, LOW);
digitalWrite (dir4, LOW);

