
“FAFA: FOOD ACCESSIBILITY FOR ALL” ENGINEERING MANUAL
A Formal Report for ME102B

Submitted to the Faculty of the

Mechanical Engineering Department
University of California, Berkeley

Berkeley, CA 94720

14 December 2023

Team 13

Ashley Lee

Justin Nam

0

Table of Contents
OPPORTUNITY 2
HIGH-LEVEL STRATEGY 2
INTEGRATED PHYSICAL DEVICE 3
FUNCTIONAL-CRITICAL DECISIONS 3
CIRCUIT DIAGRAM 4
STATE-TRANSITION DIAGRAM 4
REFLECTION 4
REFERENCES 5
APPENDICES 6

Appendix A: Bill of Materials 6
Appendix B: CAD Images 7
Appendix C: Relevant Code 9
Appendix D: Supplemental Material 14

1

Opportunity
Food security and accessibility is intrinsically dependent upon predictable climate and healthy

ecosystems. As the threats of climate change, severe weather, fire, and disease continue to increase, poor
and vulnerable communities feel the effects disproportionally [1]. There is an increasing demand for food
growth in extreme environments with climates insufficient for food growth. Our project aims to address
the most ubiquitous influence on agriculture: climate. The project, “FAFA: Food Accessibility For All”,
aims to mimic the light cycle and exposure plants need to receive in order to optimize growth. In order to
ensure accessibility, our group made it fundamental to our research and design that the components be
easy to assemble, user-friendly, and cost-effective (see Appendix A). This promotes usage worldwide,
especially in regions with extreme climates and poverty-stricken areas.

High-Level Strategy
In the initial stages of design (see Appendix B), we decided the product must be isolated from its

external environment to ensure the efficiency of simulating a different climate. This meant the system
must be enclosed with a structure covering the overhead of the system. In order to simulate the patterns of
the sun, we decided a dome would best produce the orbital of the sun in the sky throughout the various
seasons (see Appendix D).

Figure 1. Initial Design of the FAFA Project Device.

We decided that the plant will rest on a rotating disc whose speed and direction is adjustable by
the user. Utilizing the ESP32 and a DC motor, we implemented event-driven programming through
Arduino. First, our team designed a State Transition Diagram to map out all possible states our system
will be in and the inputs which will initiate transitions between states (see Figure 4). The plate speed and
direction are adjustable, controlled by a potentiometer. The push button will act as a pause switch for
when the device is running. The State Transition Diagram below illustrates how the potentiometer and
push button initiate new phases of the system. Refer to Appendix C for the code designed to execute the
event-driven programming of the state diagram.

The initial design included the ability for the user to adjust the light sensitivity and brightness to
mimic the cycles of the sun throughout the seasons, however, research indicated that the duration of light
exposure can be increased or decreased to compensate for light intensity [2]. This became rather a task to
add onto the prototype in the future and our group decided for the sake of simplicity to minimize the
states of the lights in the enclosure.

In order to protect the electronics in the system, we designed for them to be enclosed by wood
supporting the disc with the plant on it.

2

Integrated Physical Device

Figure 2. Prototype with the components labeled

Function-Critical Decisions
The initial design was to employ a wheel, connected to a motor to rotate the plate (Figure 1). We

instead chose to attach the plate directly to the shaft of the motor in order to have less constraints to our
motor. Also, due to the timing of our parts with constant iterations, we were not able to get the correct
motor we wanted to support the weight of the wheel we had originally got. We then switched to the
Polulu lab motor. But since it’s a much smaller motor with a torque value of 0.23kg-cm, we needed a
much lighter platform which resulted in us using a paper boat plate with the motor shaft attached
vertically to it (Figure 2).

The following calculations are the justification for our selection of the motor to best suit our
project goals. We over-approximated our system experience to allow for tolerance in the design.

Project Specs: (motor rotates from rest to 20 rpm in 1s)ω
𝑖

= 0 𝑟𝑝𝑚 , ω
𝑓

= 20 𝑟𝑝𝑚 , 𝑡 = 1 𝑠𝑒𝑐𝑜𝑛𝑑
Disc Specs: 𝑑 = 12 𝑖𝑛 −> 𝑟 = 6 𝑖𝑛 = 0. 1524 𝑚 , 𝑚 = 15. 2 𝑜𝑧 = 0. 431 𝑘𝑔

Torque Calculations:
Moment of Inertia: 𝐼 = 1

2 𝑚𝑟2 = 1
2 (0. 431)(0. 1524)2 = 0. 005 𝑘𝑔 * 𝑚2

Angular Acceleration: α = ∆ω
∆𝑡 = 20−0

1−0 =
2π
3 −0

1 = 2π
3 𝑟𝑎𝑑/𝑠

Torque: τ = 𝐼α = (0. 005)(2π
3) = 0. 0105 𝑁 * 𝑚

Frictional Torque: τ
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

= 𝑚𝑔µ𝑟 = (0. 431)(9. 81)(0. 6)(0. 1524) = 0. 387 𝑁 * 𝑚
Total Torque Required = Torque + Frictional Torque = 0.0105 + 0.387 = 0.3975 N*m
The motor must produce a torque spec of at least 0.3975 N*m.

3

Circuit Diagram

Figure 3. Circuit diagram with labeled components

State-Transition Diagram

Figure 4. State Transition Diagram for the event-driven programming of the “FAFA: Food Accessibility
for All” project

Reflection
Our group viewed communication and consistency as fundamental components of the success of

the project. We were proactive about project deadlines and therefore had time to troubleshoot. Our group
should have utilized the teaching staff as a resource throughout the project for help on the challenges we
faced throughout the semester.

4

References
[1] “Climate Change and the Future of Food.” Unfoundation.Org, 13 Oct. 2023,
unfoundation.org/blog/post/climate-change-and-the-future-of-food/#:~:text=Food%20security%20%E2%
80%94%20the%20reliable%20access,of%20food%20around%20the%20world.
[2] “Light, Temperature and Humidity - Ornamental Production Ornamental Production.” Aggie
Horticulture®,
aggie-horticulture.tamu.edu/ornamental/a-reference-guide-to-plant-care-handling-and-merchandising/ligh
t-temperature-and-humidity/#:~:text=Increasing%20the%20time%20(duration)%20plants,food%20to%20
survive%20and%20grow. Accessed 12 Dec. 2023.
[3] Sun’s Path Patterns, YouTube, 20 May 2020, https://m.youtube.com/watch?v=OoXOZl1A7xs.
Accessed 12 Dec. 2023.

5

Appendices

Appendix A: Bill of Materials
Component Part Amount Price Source Link

Wire Housing Basswood Carving Blocks
6x2x2 Inch

3x $17.98 Amazon Wooden Blocks

Rotating Disk 8 Inch Heavy Duty Rotating
Swivel With Steel Ball Bearings
Stand

2x $12.99 Amazon Lazy Susan Disc

Light Source LED Grow Light Strips for
Indoor Plants

2x $14.99 Amazon Sunlight LED Strips

Motor 75:1 Micro Metal Gearmotor HP
6V with Extended Motor Shaft

2x Free Polulu Polulu Motor

Dome Housing 9 Inch Acrylic Dome Cover 1x $30.79 Amazon Acrylic Dome Housing

Overall
Housing

Amazon Cardboard Box 1x Free Home

Electrical
Components

Microkit Components (refer to
circuit diagram for details)

Free Lab Kit https://microkit.berkeley.edu/

Total $76.75

6

https://www.amazon.com/Thiecoc-Basswood-Carving-Blocks-Whittling/dp/B09P42YVQM/ref=sr_1_15_sspa?crid=1QP3MF2W05PQ5&keywords=wood%2Bblocks%2Bamazon&qid=1697512394&s=home-garden&sprefix=wood%2Bblocks%2Bamazo%2Cgarden%2C157&sr=1-15-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9tdGY&th=1
https://www.amazon.com/dp/B09NMYPQN4/ref=sspa_dk_detail_0?ie=UTF8&s=home-garden&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWxfdGhlbWF0aWM&pd_rd_i=B09NMYPQN4&pd_rd_w=AgcaO&content-id=amzn1.sym.386c274b-4bfe-4421-9052-a1a56db557ab&pf_rd_p=386c274b-4bfe-4421-9052-a1a56db557ab&pf_rd_r=GW3M0MZSXB82D3XY49Q7&pd_rd_wg=wnPgm&pd_rd_r=162734f3-4fd6-4be7-8840-fca4297106bf&th=1
https://www.amazon.com/Strips-Spectrum-Dimmable-Seedling-Succulent/dp/B0CCDMHH7Y/ref=sr_1_14_sspa?crid=1DDNZT17JPCMJ&keywords=sun+light+plant&qid=1697512789&sprefix=sun+light+plan%2Caps%2C149&sr=8-14-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9tdGY&psc=1
https://www.pololu.com/product/2215
https://www.amazon.com/JMX-Acrylic-Outdoor-Security-Housing/dp/B012OGT25G/ref=asc_df_B012OGT25G/?tag=hyprod-20&linkCode=df0&hvadid=647101353978&hvpos=&hvnetw=g&hvrand=14295200752580715152&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9031945&hvtargid=pla-701012179191&psc=1&gclid=CjwKCAjwkNOpBhBEEiwAb3MvvbzCbqv-oyUW3RGvt752Cnc2O5d_rJZpfZiurYLuf-deuUOhBBLvZRoCyucQAvD_BwE
https://microkit.berkeley.edu/

Appendix B: CAD Images

7

8

Appendix C: Relevant Code
#include <ESP32Encoder.h>

#define BIN_1 26

#define BIN_2 25

#define LED_PIN 13

#define POT 14

#define JOYSTICK_BUTTON 34 // Joystick button pin

ESP32Encoder encoder;

int omegaSpeed = 0;

int omegaDes = 0;

int omegaMax = 18;

int D = 0;

int potReading = 0;

bool buttonPressed = false; // Stores the state of the joystick button

unsigned long lastDebounceTime = 0; // Last time the joystick button was toggled

const unsigned long debounceDelay = 50; // Debounce time in milliseconds

volatile int count = 0;

volatile bool interruptCounter = false;

volatile bool deltaT = false;

int totalInterrupts = 0;

hw_timer_t *timer0 = NULL;

hw_timer_t *timer1 = NULL;

portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;

portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;

const int freq = 5000;

const int ledChannel_1 = 1;

const int ledChannel_2 = 2;

const int resolution = 8;

const int MAX_PWM_VOLTAGE = 255;

const int NOM_PWM_VOLTAGE = 150;

unsigned long startTime = 0;

bool motorDirectionClockwise = true;

bool motorRunning = false; // Motor running state

enum MotorState {

9

MOTOR_STOPPED,

MOTOR_RUNNING,

FOLLOWING_POT

};

MotorState state = MOTOR_STOPPED;

// Function prototypes

void adjustMotorSpeedBasedOnPot();

void handleJoystickPress(); // Prototype for the ISR

void IRAM_ATTR onTime0() {

portENTER_CRITICAL_ISR(&timerMux0);

interruptCounter = true;

portEXIT_CRITICAL_ISR(&timerMux0);

}

void IRAM_ATTR onTime1() {

portENTER_CRITICAL_ISR(&timerMux1);

count = encoder.getCount();

encoder.clearCount();

deltaT = true;

portEXIT_CRITICAL_ISR(&timerMux1);

}

void setup() {

pinMode(POT, INPUT);

pinMode(LED_PIN, OUTPUT);

digitalWrite(LED_PIN, LOW);

Serial.begin(115200);

ESP32Encoder::useInternalWeakPullResistors = UP;

encoder.attachHalfQuad(33, 27);

encoder.setCount(0);

ledcSetup(ledChannel_1, freq, resolution);

ledcSetup(ledChannel_2, freq, resolution);

ledcAttachPin(BIN_1, ledChannel_1);

ledcAttachPin(BIN_2, ledChannel_2);

timer0 = timerBegin(0, 80, true);

10

timerAttachInterrupt(timer0, &onTime0, true);

timerAlarmWrite(timer0, 10000, true); // 10 ms, autoreload true

timer1 = timerBegin(1, 80, true);

timerAttachInterrupt(timer1, &onTime1, true);

timerAlarmWrite(timer1, 10000, true); // 10 ms, autoreload true

timerAlarmEnable(timer0);

timerAlarmEnable(timer1);

pinMode(JOYSTICK_BUTTON, INPUT_PULLUP); // Set the joystick button as an input with

pull-up

attachInterrupt(digitalPinToInterrupt(JOYSTICK_BUTTON), handleJoystickPress,

FALLING);

startTime = millis();

}

void loop() {

switch (state) {

case MOTOR_STOPPED:

if (motorRunning) {

state = MOTOR_RUNNING;

}

stopMotor();

break;

case MOTOR_RUNNING:

if (!motorRunning) {

state = MOTOR_STOPPED;

}

handleMotorRunning();

break;

case FOLLOWING_POT:

adjustMotorSpeedBasedOnPot();

if (!motorRunning) {

state = MOTOR_STOPPED;

}

break;

default:

11

Serial.println("Error: Unknown State");

state = MOTOR_STOPPED;

break;

}

}

void IRAM_ATTR handleJoystickPress() {

if ((millis() - lastDebounceTime) > debounceDelay) {

motorRunning = !motorRunning;

buttonPressed = true;

state = FOLLOWING_POT;

lastDebounceTime = millis();

}

}

void stopMotor() {

ledcWrite(ledChannel_1, 0);

ledcWrite(ledChannel_2, 0);

}

void handleMotorRunning() {

if (deltaT) {

portENTER_CRITICAL(&timerMux1);

deltaT = false;

portEXIT_CRITICAL(&timerMux1);

omegaSpeed = count;

potReading = analogRead(POT);

omegaDes = map(potReading, 0, 4095, -omegaMax, omegaMax);

motorDirectionClockwise = (omegaDes >= 0);

D = map(potReading, 0, 4095, -NOM_PWM_VOLTAGE, NOM_PWM_VOLTAGE);

if (D < 0) {

D = -D;

}

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

}

if (motorDirectionClockwise) {

ledcWrite(ledChannel_1, D);

12

ledcWrite(ledChannel_2, 0);

} else {

ledcWrite(ledChannel_1, 0);

ledcWrite(ledChannel_2, D);

}

Serial.print("Joystick Button State: ");

Serial.println(buttonPressed ? "Pressed" : "Released");

Serial.print(" Motor Running: ");

Serial.println(motorRunning ? "Yes" : "No");

Serial.print(" Desired Speed: ");

Serial.print(omegaDes);

Serial.print(" Actual Speed: ");

Serial.print(omegaSpeed);

Serial.print(" Motor Direction: ");

Serial.println(motorDirectionClockwise ? "Clockwise" : "Counterclockwise");

}

}

void adjustMotorSpeedBasedOnPot() {

potReading = analogRead(POT);

omegaDes = map(potReading, 0, 4095, -omegaMax, omegaMax);

motorDirectionClockwise = (omegaDes >= 0);

D = map(potReading, 0, 4095, -NOM_PWM_VOLTAGE, NOM_PWM_VOLTAGE);

if (D < 0) {

D = -D;

}

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

}

if (motorDirectionClockwise) {

ledcWrite(ledChannel_1, D);

ledcWrite(ledChannel_2, 0);

} else {

ledcWrite(ledChannel_1, 0);

ledcWrite(ledChannel_2, D);

}

}

13

Appendix D: Supplemental Material

Figure D-1. The orbital path of the sun [3]

14

