
Manual: How to build a Plant Nanny

Guillermo Fernandez, Preston Hong, Dafne Renteria, Sebastian Quiroz

University of California, Berkeley
December 15, 2023

Project Opportunity

Inspired to tackle the pervasive plant death in the CALNERDS STEM student center due to insufficient
watering during long breaks; Our team was driven to devise an automatic irrigation system that allows the
user to have a plant nanny that supports up to 4 plants while they’re away!

1. High Level Strategy

Our system aims to automate plant watering based on soil moisture levels. When the soil’s moisture
falls below the set threshold, the drivetrain, watering, and passive sensing subsystems collaborate to initiate
watering.

While our initial strategy was quite ambitious we must admit; we were able to realize the core systems
to achieve the main required functionalities. Despite initial ambitious plans, we streamlined the implemen-
tation by using a single sensor instead of four and chose to leverage gravity to drive the water flow. For
example, to support 4 plants (4x sensors), it would require us to implement a complex rule set such that the
system could handle a situation where 2+ plants require water (prioritization). Since the implementation
of each required complex ideology and coding beyond our group’s capabilities within the deadline of the
project we only implemented 1.

Additionally, another deviation from the original strategy was the design choice was the leverage of
gravity to push the flow of water instead of an additional motorized pump—this reduced both design
complexity and energy consumption. However, this consideration required us to limit our water reservoir
so the motor could still drive the loads because the reservoir had to be elevated above the solenoid (higher
than the plant). Ultimately, we accepted this compromise as we could still meet the project requirements
but also save money on materials.

2. Integrated Physical Device

The main components of the system include the motor, solenoid, sensors, motor housing and reservoir
(figure 1). To achieve this, we have designed a wooden housing that will serve as a support for most of the
system elements, as well as protect the system’s transmission and, most importantly, the motor.

The tube that supplies water to irrigate the plants will always start from a predetermined position and
will remain in that state (start) until the sensor detects that the humidity of a plant is below the preset
value. At this point, the motor will rotate. Once it reaches this position and the motor stops, the solenoid
is activated opening the valve to allow water to flow through the tube. The system is designed to water
each plant for a specific time, adjustable according to the user’s preferences and conditioned by factors such
as the type of plant, its size, the weather, the climate, etc.

Our irrigation system has a meticulously designed drive system, which features a seamless integration
of components such as the Lazy Susan, collar, shim, ball bearing, shaft, coupling, flanged mount and a
single compact unit comprising the Gearbox, DC motor and encoder.

At the heart of our drive system is the integrated unit of gearbox, DC motor and encoder. This compact
assembly serves as the power source and control center of the system. To achieve the transmission of the
movement from the motor shaft to the rotating platform, it will be necessary to use a shaft of considerable
dimensions. This will allow us to reach a suitable height for the solenoid, from which we will be able to
adjust the watering of the plants, while ensuring a solid, safe and efficient transmission system. For the
connection of both shafts, we will use a coupling, whose main function is to guarantee the transmission of
the movement and to absorb the vibrations in the union between these two elements.

1

(a) General picture with the main elements of the system (b) Elements of the transmission system

Figure 1: Integrated Physical Device

The collar and shim, strategically positioned next to each other, provide stability and alignment, ensur-
ing that the rotational movement remains consistent. In addition, the ball bearings contribute significantly
to the stability of the system by reducing friction, which in turn contributes to the longevity of the compo-
nents and the system as a whole. This structured and well-coordinated approach to motion transmission is
essential to ensure the efficient and long-lasting operation of our automated irrigation system. Within the
sequence of elements that make up our drive system, the Lazy Susan is the last component. This element is
considered as our second ball bearing. When a shaft is supported by two bearings, it experiences improved
resistance against bending and deflection. This design choice helps distribute the load more evenly along
the shaft, preventing excessive flexing that could occur with only one bearing. Also, the Lazy Susan enables
smooth and controlled movement, allowing the system to precisely direct the flow of water.

3. Function Critical Designs and Calculations

3.1 Motor Calculations

The mass of the rotating disk and framing is 1.3kg. The mass of 2L of water is 2kg. Using these
numbers, we can solve for our moment of inertia:

I = 0.052161186 kgm2 (From CAD)
Our goal is to travel π

2 radians in 2 seconds. To achieve this, we solved equation 1, setting t=2s.

π

2
= α ∗ t2 (1)

2

The angular acceleration needed is: αgoal = 0.393rad/s2.

τ = Iα (2)

Using equation 2 and τstall = 0.18kgm of the motor included in our kit, we then determined our maximum
angular acceleration, αstall = 3.45rad/s2. Following the rule of thumb of 60%, we set αmax = 2rad/s2.
This is well above our goal angular acceleration: αmax = 2rad/s2 > αgoal = 0.393rad/s2.

3.2 Bearings and Coupling

Our flanged ball bearing has radial load capacities of 330 lbs dynamic and 120 lbs static with a max
rated speed of 45000rpm. This is well above any load we will experience. The 4" lazy susan bearing
has a load capacity of 300 lbs, which is also above any load we will experience. Since we have a direct
transmission, a flexible coupling was chosen to compensate for any misalignment.

4. State Diagram and Circuit Diagram

(a) General picture with the main elements of the system (b) Elements of the transmission system

Figure 2: Integrated Physical Device

5. Reflection

Fabricating an idea on paper to something tangible and real is not an easy task. One of the most critical
strategies for a successful project is good communication. You must also keep in mind that you will iterate
your design multiple times and most of the issues with your design will only be seen once fabricated, so
start early. Fabrication can be time-consuming and costly depending on the manufacturing method, so
be diligent and do it in a timely manner. Take into account things like tolerances, fits, sizing, strength
and stability of design, wiring etc. Lastly, when it comes to the code, make sure you allow ample time for
debugging. For our team in particular the code was the most difficult part.

3

6. Appendix

Appendix A: Bill of Materials

Table 1: Motor Drivetrain Components

Component Name Vendor + Website Quantity Cost Notes

12V 40 RPM Motor w encoder DFRobot 1 $0.00 Already have
6mm to 8mm Shaft Aluminum Coupling Amazon 1 $8.49
1/4"D, D-Profile Rotary Shaft, 4"L McMaster 1 $0.00 Already have
4" lazy susan turntable Amazon 1 $4.99
M3 3mm (L) philips screw (motor mounting) McMaster 6 $0.00 Already have
M4 16mm (L) Philips Screw McMaster 16 $0.00 Already have
M4 Screw nut McMaster 8 $0.00 Already have
1/4" (D inner) 5/8" (D outer) Flanged Bearing McMaster 1 $6.42
1/4" (D inner) Shim McMaster 1 $13.94
8mm (D) Shaft Collar Ruland 1 $0.00 Already have
Belleville Disc Spring for 1/4" Shaft Diameter McMaster 2 $2.33
Mechanical Limit Switch Amazon 1 $6.00
8” Flange Mount Amazon / CAD 1 $0.00 Already have
Laser Cut Housing Jacobs Machine Shop 24 $11.00
D:5mm, 5cm (L) Standoff Tom 4 $0.00

Total Cost: $53.17

Table 2: Irrigation Components

Component Name Vendor + Website Quantity Cost Notes

12V DC Solenoid Valve 1/4" Amazon 1 $15.69
Arduino Uno Arduino 1 $0.00 Already have
12V DC Power Supply Tom 1 $0.00 Tom Lent
1/4” id to 1/4” mip plastic hose adapter Amazon 2 $6.99 Already have
12V Relay Module Zero 1 $0.00 Tom Lent
10FT 1/4" Vinyl tubing Amazon 1 $7.90
Bottle Cap Adapter 1/4" tubing Amazon 1 $9.54
1.25L Plastic Bottle Safeway 1 $1.00

Total Cost: $41.12

4

Table 3: Soil Sensor Components

Component Name Vendor + Website Quantity Cost Notes

Soil Sensor Adafruit 4 $62.09
Cable - Male found in kit 4 -
Cable - Female found in kit 4 -
Stemma Cable found in kit 4 -
Jumper Wires / Misc Wires Tom Many $0.00 Already have (kit)
DRV8833 Dual Motor Driver Carrier Pololu 1 $0.00 Already have (kit)
100 µF Capacitor Tom 1 $0.00 Already have (kit)
Breadboard Tom 1 $0.00 Already have (kit)

Total Cost: $62.09

Table 4: Total Project Cost

Description Cost

Motor Drivetrain $53.17
Irrigation $41.12
Soil Sensor $62.09

Total Project Cost $156.38

Appendix B: CAD

5

Figure 3: Isometric View of the system structure

6

Figure 4: Isometric View of the transmission system

7

Appendix C: Code

1 # include <Wire .h>
include " Adafruit_seesaw .h"

3
define relayPin 4 // Relay control pin

5
// Define pin numbers for motor

7 # define DIR1 6
define PWM1 5

9
// Define pin numbmers for encoder

11 # define encoderPinA 2
define encoderPinB 3

13 # define endstop 46
https :// www . overleaf . com / project /6566 ea9dce4bd0de292a028a

15
Adafruit_seesaw moistureSensor1 ;

17 uint16_t moisture1 ;

19 const int relayEnable = 2;
const int thresholdMax = 800;

21 const unsigned long solenoidDuration = 5000; // Solenoid open duration in
milliseconds

const unsigned long waitDuration = 30000; // Wait duration in milliseconds
23

// Variable for encoder counts
25 volatile long encoderCount = 0;

// Variables for PID Control
27 long previousTime = 0;

float ePrevious = 0;
29 float eIntegral = 0;

int endstopvalue = 0;
31 int direction = 0;

int direction2 = 0 ;
33 int sendHome = 0;

int reverse = 0;
35 int goPlant = 0;

int out =0;
37 int home = 0;

void handleEncoder () {
39 if (digitalRead (encoderPinA) > digitalRead (encoderPinB)){

encoderCount ++;
41 }

else {
43 encoderCount - -;

}
45 }

enum State {
47 IDLE = 0,

SENSING ,
49 MOVING ,

WATERING ,
51 RETURNHOME ,

};
53

State currentState = IDLE ;
55 unsigned long startTime = 0;

unsigned long aboveThresholdStartTime1 = 0;
57 unsigned long solenoidStartTime = 0; // Track the solenoid start time

const unsigned long sensingDuration = 5000; // 5 seconds in milliseconds
59

8

void setup () {
61 Serial . begin (115200) ;

pinMode (DIR1 , OUTPUT);
63 pinMode (PWM1 , OUTPUT);

pinMode (encoderPinA , INPUT);
65 pinMode (encoderPinB , INPUT);

pinMode (endstop , INPUT);
67 pinMode (relayPin , OUTPUT); // Initialize relay pin as OUTPUT

// Endstop
69 // Interrupt for encoder

attachInterrupt (digitalPinToInterrupt (encoderPinA), handleEncoder , RISING);
71

if (! moistureSensor1 . begin (0 x36)) {
73 Serial . println (" ERROR ! Moisture sensor 1 not found ");

while (1)
75 ;

}
77 }

79 void moveMotor (int dirPin , int pwmPin , float u, int direction){
if (direction == 1){

81 direction2 = 0;
float speed = 45;

83 digitalWrite (dirPin , direction2);
analogWrite (pwmPin , speed);

85 }

87 if (direction == 0){
direction2 = -1;

89 float speed = -45;
digitalWrite (dirPin , direction2);

91 analogWrite (pwmPin , speed);
digitalWrite (0 , 0);

93 analogWrite (0 , 0);
}

95
return 0;

97 }
void moveBackHome () {

99 const int targetAngle = -90; // Target angle in degrees (negative for moving
in the opposite direction)

const float countsPerRevolution = 360; // Number of encoder counts in one
revolution

101 const int encoderCounts = abs (targetAngle) / 360.0 * countsPerRevolution ; //
Calculate counts for -90 degrees

103 float kp = 2; // Update these values based on your tuning requirements
float kd = 0.1;

105 float ki = 0.01;
int direction = 0; // Assuming negative direction for a -90- degree rotation

107
long initialEncoderCount = encoderCount ; // Record the initial encoder count

109 long targetEncoderCount = initialEncoderCount - encoderCounts ; // Calculate
target encoder count

111 while (encoderCount > targetEncoderCount) {
int error = encoderCount - targetEncoderCount ;

113 float u = pidController (targetEncoderCount , kp , kd , ki); // Compute PID
control signal

115 // Adjust motor movement based on the PID output
moveMotor (DIR1 , PWM1 , u, direction);

9

117 }

119 // Stop the motor after reaching the desired angle
moveMotor (DIR1 , PWM1 , 0, 0);

121 }

123 float pidController (int target , float kp , float kd , float ki) {
// Measure the time elapsed since the last iteration

125 long currentTime = micros ();
float deltaT = ((float)(currentTime - previousTime)) / 1.0 e6;

127
// Compute the error , derivative , and integral

129 int e = encoderCount - target ;
float eDerivative = (e - ePrevious) / deltaT ;

131 eIntegral = eIntegral + e * deltaT ;

133 // Compute the PID control signal
float u = (kp * e) + (kd * eDerivative) + (ki * eIntegral);

135
// Update variables for the next iteration

137 previousTime = currentTime ;
ePrevious = e;

139
return u;

141 }

143 // Function to move the motor approximately 90 degrees
void move90Degrees () {

145 const int targetAngle = 90; // Target angle in degrees
const float countsPerRevolution = 360; // Number of encoder counts in one

revolution
147 const int encoderCounts = targetAngle / 360.0 * countsPerRevolution ; //

Calculate counts for 90 degrees

149 float kp = 2; // Update these values based on your tuning requirements
float kd = 0.1;

151 float ki = 0.01;
int direction = 1; // Assuming positive direction for a 90 - degree rotation

153
long initialEncoderCount = encoderCount ; // Record the initial encoder count

155 long targetEncoderCount = initialEncoderCount + encoderCounts ; // Calculate
target encoder count

157 while (encoderCount < targetEncoderCount) {
int error = targetEncoderCount - encoderCount ;

159 float u = pidController (targetEncoderCount , kp , kd , ki); // Compute PID
control signal

161 // Adjust motor movement based on the PID output
moveMotor (DIR1 , PWM1 , u, direction);

163 }

165 // Stop the motor after reaching the desired angle
moveMotor (DIR1 , PWM1 , 0, 0);

167 }

169 void openSolenoid () {
Serial . println (" Opening solenoid ");

171 digitalWrite (relayPin , LOW); // Activate relay to open the solenoid
solenoidStartTime = millis (); // Record the start time of the solenoid

operation
173 }

10

175 void closeSolenoid () {
digitalWrite (relayPin , HIGH); // Deactivate relay to close the solenoid

177 }

179 void loop () {

181 endstopvalue = digitalRead (endstop);
// let motor run until endstopper is hit

183 while (sendHome == 0){
direction2 = 0;

185 float speed = 45;
digitalWrite (DIR1 , direction2);

187 analogWrite (PWM1 , speed);
endstopvalue = digitalRead (endstop);

189 switch (currentState) {
case IDLE :

191 Serial . println (" IDLE : doing nothing ");
moisture1 = moistureSensor1 . touchRead (0) ;

193 Serial . print (" Moisture 1 Humidity :");
Serial . println (moisture1);

195
if (millis () - startTime >= sensingDuration) {

197 currentState = SENSING ;
startTime = millis (); // Reset the start time for the next state

199 Serial . println (" Transitioning to SENSING state ");
aboveThresholdStartTime1 = 0; // Reset the timer for above - threshold

duration
201 }

break ;
203

case SENSING :
205 Serial . println (" SENSING Moisture 1 ");

moisture1 = moistureSensor1 . touchRead (0) ;
207 Serial . print (" Moisture 1 Humidity :");

Serial . println (moisture1);
209

if (moisture1 < thresholdMax) {
211 currentState = MOVING ;

Serial . println (" Transitioning to MOVING state ");
213 } else {

aboveThresholdStartTime1 = 0; // Reset the timer if humidity is above
threshold

215 currentState = IDLE ;
startTime = millis (); // Reset the start time for the next IDLE state

217 Serial . println (" Transitioning back to IDLE ");
}

219 break ;

221 case MOVING :
Serial . println (" MOVING ");

223 move90Degrees (); // Call the function to move the motor approximately 90
degrees

currentState = WATERING ; // Move to the WATERING state after motor
movement

225 break ;

227 case WATERING :
Serial . println (" WATERING ");

229 if (millis () - solenoidStartTime < solenoidDuration) {
Serial . println (" Opening solenoid ");

231 openSolenoid (); // Open the solenoid

11

} else {
233 if (moisture1 < thresholdMax) {

closeSolenoid (); // Close the solenoid after the set duration only if
moisture is below threshold

235 currentState = RETURNHOME ;
Serial . println (" Plant watered ");

237 currentState = RETURNHOME ;
}

239 }
break ;

241
case RETURNHOME :

243 Serial . println (" RETURNING HOME ");
moveBackHome (); // Call the function to move back home or approximately

-90 degrees
245 currentState = SENSING ; // Move to the SENSING state after returning

home
startTime = millis (); // Reset the start time for the next IDLE state

247 Serial . println (" Returning to IDLE state ");
break ;

249 delay (2000) ;
}

251 }
}

Listing 1: Blink.ino

Appendix D: Extra Images

1. State Diagram

12

2. Circuit Diagram

Figure 5: Circuit Diagram

13

3. Flow Calculations Graphs

Figure 6: Velocity vs Time

Figure 7: Caudal vs Time

14

