Shim and

faceplate

Belleville washerJ e — V
Al \
Yaw motor coupler

Electronics Standoff
support

ME 102B Final Project Report: SkyPal Automatic Telescope
Group 16: Konrad Keihl, Shawn Tuten, Aidan White, William Shiflet

Opportunity:

Looking up at the night sky, observing the heavens, and pondering our miniscule existence has
been a human experience for millenia. People have always been drawn to the stars, and we
created SkyPal to make it easier than ever before. SkyPal offers 20-200x magnification and
easy-to-use potentiometer knobs to adjust both the yaw and pitch of the telescope, allowing the
user to home in on their celestial target.

High-level Strategy:

The process begins when the user defines a trajectory that they are interested in observing.
They have two options for how to communicate this to SkyPal. Option one: the user sets the
SkyPal manual mode and adjusts the pitch and yaw control axis knobs by hand. Option two: the
user sets SkyPal to computer mode and types in a trajectory obtained via visual confirmation or
GPS data calculation. Initially, we wanted to automate this second process by connecting to the
Internet, but left this feature out.

After SkyPal receives a command in either manual or computer mode, it positions and adjusts
the gimbal-mounted axes motors to the requested position. When the position is changed,
SkyPal will continue to follow new commands. If the control modes are swapped, or SkyPal is
rebooted to manual mode, it will move to the currently-set analog position. We also
outperformed the initial metrics of time to position of 30 seconds and precision of 1 degree.

Device With Integrated and Labeled Systems:

Flanged ball
bearing

Breadboard

7 ESP32
S microcontroller

Shaft collar

/a\Wh >
Yaw control
potentiometer |

Ve -
1 . Motor mounting
\ _ screws

| 6V yaw control
motor with
encoder

Pitch control i
potentiometer [

Motor driver

Telescope

— — Flanged e
6V pitch control - ball Clamp
motor with encoder bearing locking

- .' ‘ L -
Pitch motor
‘-u\\-

~ | SCrews

=
o
|

. E e
mounting : | "
screws . |
. ! ‘ Shaft
| K
‘ . /A
| 2 \

Standoffs
3D Shaft !
printed l | collar Telescope
‘ | o support
B .

= 4

o

. ' V = ‘ Spacing §
- \ \ plate ‘\
Function-critical Decisions, Calculations, and Specifications:
DOF1:
Bearing Forces

Axial: y F

F = mg = (2.2kg)(9.81m/s") = 21.6N d w
Though it is not designed to handle axial loads, this X
load is small enough to handle.
Radial: 1 F d
XM =0= —F d —Fd=20 R1 1
P2 Rlx 2 w
F. = —F 2% = —(2L6N)2I — _ 33,75N | l
Rlx w dz - ’ 16mm ’ FRE d2
F = —F = 33.75N
R2x R1x | |
Max static radial load 120 Ib = 534 N, acceptable
DOF2:
Bearing Forces F
— - _ . — 2
z:1\/IP1 =0= Fw,telescope d + ZdFZ =0 F1 d d
F (1.5kg)*(9.81)
F =——=——"—"7—""—=7.36N N
2 2 2
ZFy=F1+F2—FW=O y
F1 =FW - F2 = 7.36 N ‘
Max static radial load 120 Ib = 534 N, acceptable X Fw

Required Torque, Assuming the telescope center of
mass is 25 mm off
M = Fr

F=m ~g-r = (1.5kg)(9.81)(25mm) = 3.77 kgcm

telescope

Polulu #4831 gearmotor, 60% of stall torque = 18.6 kg cm, able to handle this load

Circuit and State Transition Diagrams:

+5V

State Transition

Diagram DRV8833 H-Bridge

GND GND |-
oo NG
Uezour B2
State 1: $]A1OUT ATINfy
Safe state - A20UT A2IN

No motor

Press button 1/
Press button 2 / actuation Serial print “Now

Serial print “Now in in manual control
the safe state.” / mode.”

Press button
2 [/ serial
print “Now in
the safe
state.”

ESP32

State 2: Manual
control mode
using

State 3:
Computer
control mode Press button 1 /

[}

o

(]

2

3

[9]
233285

=3
TTTTTTTITTTI

|||||||||| T
@
L
(]
~N
3
(2]
T
2
3

potentiometers GPIO14 GPI
seralprc ow per oo 1
in manual control GPIOS GPI00 =
GPIO10 GPIO8 [—
GPIO1 GPIOT =
GND GPIOE =
+3.3V —vi V3

Prass button 1 / Serial print “Now in
computer control mode.”

The circuit diagram above represents the necessary circuitry to perform single-axis position
control, which is the basis for our project. A double-axis design was indeed developed and
tested, but we went with the single axis control for simplicity of demonstration and
representation. Notice that the H-bridge inputs and outputs are “doubled-up” to account for the
increased current demands of the motor.

Reflection:

Our telescope project concluded as planned, featuring a significant component constructed from
wood—a material not widely recognized for its stability and strength.

The lack of precision apparent at the end of our project was found to be a product of our
gearbox selection. In retrospect, the inclusion of a capstan transmission could have alleviated
this issue, but this consideration only emerged after the design and procurement of materials.
The final circuit could have also benefited from some tidying as we were still using jumper wires
on a single breadboard. Moving the manual controls to a secondary breadboard and replacing
jumper wires with shorter, fitted cut wires would have made the final wiring easier to read and
more aesthetically pleasing.The wiring could also benefit from being moved closer to the center
of one of the platforms, but a mounting and attachment system was never incorporated. Our
original concept of a star tracker was not reached but all of the mechanisms needed for this are
in place. A couple days and a couple headaches of software updates should be able to
accomplish this. Our project was overall a success in our eyes but is not without its faults.

Appendix A: CAD Drawings

Isometric View:

DOF 2

DOF 1

DOF1:

“— Coupling Shaft Collar,

w———— Shim, and
Belleville Washer

DOF2:

Motor Shaft Coupling

Shaft

Bearing
Collar, Shim, an

Belleville Washe

DOF2, Shaft Telescope Mount:

T4 Thresded Heat
Insert

Appendix B: Bill of Materials

Purchase Serial Link
Justificatio Number/ Price. Qua Vendo to
Item Name Description n SKU (ea.) ntity r Item
Telescope Koolpte Telescope, Centerpiece Amazo LINK
70mm Aperture for the n
400mm AZ Mount project
Astronomical
Refracting
Telescope
(20x-200x) for Kids $79.99 1
& Adults, Portable
Travel Telescope
with Tripod Phone
Adapter, Remote
Control, Easy to
Use, Black 40070
Flexible Motor Coupling uxcell 4mm to Connects a20112600 Amazo LINK
6.35mm aluminum motors to ux0061 $12.64 1|n
L25xD19 shafts
1/4" Bore Shaft Collars Zeberoxyz 8pcs Used to fix ZE128 Amazo LINK
Sets-Screw Style 1/4" Bore Shaft motor shaft n
Collars Sets-Screw in place
Style Zinc Plated
Solid Steel
Lock Collars with
1/2" Outer $11.98 1
Diameter and 5/16"
Width for Drive
shafts, The
Automotive
Industry etc.(1/4",
Zinc Plated)
Flanged Radial Ball QBBC FR4-ZZ 1/4" Constrains FR4-7Z7 Amazo LINK
Bearing x 5/8" x 0.196" shaft n
Flanged Radial Ball rotation for $19.79 1
Bearing 10pack both drive
shafts
Stainless Steel Ring 316 Stainless Steel Used 97022A37 McMa LINK
Shim Ring Shim, 0.01" between 2 ster-C
Thick, 1/4" the collars arr
ID, packs of 10 and ball $8.63 1
bearings to
guarantee
fit

https://www.amazon.com/gp/product/B0C4KVQGCV/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/uxcell-Aluminum-Coupling-Flexible-Connector/dp/B09137356F/ref=sr_1_1?keywords=4mm+to+6.35mm+Aluminum+Alloy+Shaft+Coupling+Flexible+Coupler+Motor+Connector+Joint+L25xD19+Silver%2C5pcs&qid=1702506935&sr=8-1
https://www.amazon.com/Zeberoxyz-Sets-Screw-Diameter-Automotive-Industry/dp/B0B4JQ1RPG/ref=sr_1_1?crid=3MIV4WK7ECMB8&keywords=Zeberoxyz%2B8pcs%2B1%2F4%22%2BBore%2BShaft%2BCollars%2BSets-Screw%2BStyle%2BZinc%2BPlated%2BSolid%2BSteel%2BLock%2BCollars%2Bwith%2B1%2F2%22%2BOuter%2BDiameter%2Band%2B5%2F16%22%2BWidth%2Bfor%2BDrive%2Bshafts%2C%2BThe%2BAutomotive%2BIndustry%2Betc.(1%2F4%22%2C%2BZinc%2BPlated)&qid=1702507229&sprefix=zeberoxyz%2B8pcs%2B1%2F4%2Bbore%2Bshaft%2Bcollars%2Bsets-screw%2Bstyle%2Bzinc%2Bplated%2Bsolid%2Bsteel%2Block%2Bcollars%2Bwith%2B1%2F2%2Bouter%2Bdiameter%2Band%2B5%2F16%2Bwidth%2Bfor%2Bdrive%2Bshafts%2C%2Bthe%2Bautomotive%2Bindustry%2Betc.%2B1%2F4%2B%2C%2Bzinc%2Bplated%2B%2Caps%2C145&sr=8-1&th=1
https://www.amazon.com/FR4-ZZ-Flanged-Radial-Bearing-10pack/dp/B06X19Z696/ref=sr_1_1?crid=368HVPHO7YEMR&keywords=QBBC+FR4-ZZ+1%2F4%22+x+5%2F8%22+x+0.196%22+Flanged+Radial+Ball+Bearing+10pack&qid=1702507493&sprefix=qbbc+fr4-zz+1%2F4+x+5%2F8+x+0.196+flanged+radial+ball+bearing+10pack%2Caps%2C174&sr=8-1
https://www.mcmaster.com/97022A372/

Belleville Disc Spring

Flange Mounted Shaft

Support

Steel D-Profile Shaft

Female Hex Threaded

Standoff

Male-Female Hex
Standoff (2")

Male-Female Hex
Standoff (3")

499:1 Gearmotor w/

Encoder

Belleville Disc
Springs for Ball
Bearing Trade No.
R3, 0.319" ID,
packs of 10

Easy-Access
Flange-Mounted
Shaft Support for
1/4" Shaft
Diameter, 1117
Carbon Steel

D-Profile Rotary
Shaft, 1045 Carbon
Steel, 1/4"
Diameter, 12" Long

Aluminum Female
Threaded Hex
Standoff, 6mm
Hex, 52mm Long,
M3 x 0.50 mm
Thread

Male-Female
Threaded Hex
Standoff, 18-8
Stainless Steel,
1/4" Hex, 2" Long,
8-32 to 8-32
Thread

Male-Female
Threaded Hex
Standoff, 18-8
Stainless Steel,
1/4" Hex, 3" Long,
8-32 to 8-32
Thread

499:1 Metal
Gearmotor
25Dx73L mm LP
6V with 48 CPR
Encoder

Used

against ball
bearings to
limit motion

Mount for
swiveling
telescope
base

Main shaft
between
motors and
telescope

Used
between
layers of
the base to
join and
space
levels

Used
between
layers of
the base to
join and
space
levels

Used
between
layers of
the base to
join and
space
levels

High gear
ratio for
maximum
precision.
Motors
control our
degrees of
freedom

94065K26

1870K1

86327139

95947A08
7

91075A45
9

91075A01
2

4831

$3.94

$45.24

$10.86

$2.87

$2.84

$4.88

$45.95

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

Pololu

-
Z
~

—
I~

—
Z
~

—
I~

—
Z
~

—
~

E
Z
P

https://www.mcmaster.com/94065K26/
https://www.mcmaster.com/1870K1/
https://www.mcmaster.com/8632T139/
https://www.mcmaster.com/95947A087/
https://www.mcmaster.com/91075A459/
https://www.mcmaster.com/91075A012/
https://www.pololu.com/product/4831

Wall Power Adapter

8-32 Nut, 10 Pack

4-40, 11/16" long,
Phillips screw

4-40 Nut, 100 Pack

M3 Screws, 100 pack

8-32 Screws, 100 pack

6-32 SHCS, 100 pack

6-32 Washer, 100 pack

6-32 Hexnut, 100 pack

Lower Assembly Mid
Plate Bearing

Lower Assembly Mid
Plate

Motorplate 25D

Wall Power
Adapter: 9VDC,
5A, 5.5%x2.1mm
Barrel Jack,
Center-
Positive

Fastener

Fastener

Fastener

Fastener

Fastener

Fastener

Fastener

Fastener

Spacer for DOF1
shaft

Plate for mounting
shaft

Plate for mounting
motor

Lower Assembly Bottom Bottom plate for

Main power
supply for
motors

Mounts to
standoffs

Mounts for
motor
mount
bearing

Mounts for
motor
mount
bearing

Mounts to
motor

Mounts to
bottom
plate
standoffs

Mounts to
flange
support

Mounts to
flange
support

Mounts to
flange
support

Laser Cut
Plywood
0.25in

Laser Cut
Plywood
0.25in

Laser Cut
Plywood
0.125in

Laser Cut

1465

91240A00
9

91772A117

91841A00
5

92005A118

90272A19
2

92196A15
3

92141A00
8

91841A00

7

Custom

Custom

Custom

Custom

$24.95

$4.78

$4.7

$4.94

$4.9

$3.89

$3.8

$8.76

$8.7

$ 3.51

$3.5

$11.37

$11.
37

$1.53

$1.5

$4.81

$4.8

Pololu

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

McMa
ster-C
arr

L
pd
~

:

C
pd
P

—
pd
~

—
~

—
Z
~

—
Z
~

C
pd
P

https://www.pololu.com/product/1465
https://www.mcmaster.com/91240A009
https://www.mcmaster.com/91772A117
https://www.mcmaster.com/91841A005
https://www.mcmaster.com/92005A118
https://www.mcmaster.com/90272A192
https://www.mcmaster.com/92196A153
https://www.mcmaster.com/92141A008
https://www.mcmaster.com/91841A007

Plate

Electronics Holder

TurretMountSidePlateB
oxCut

TurretMountFrameFront

TurretMountBottomPlat

esBoxCut

MotorMountPlate

TeleHolder_REV7

balancing

Holds Electronics

Side plate of turret

Front plate of turret

Bottom Plate of
turret

Motor mounting
plate

Mounts shaft to
telescope

Plywood
0.25in

Laser Cut
Plywood
0.125in

Laser Cut
Plywood
0.25in

Laser Cut
Plywood
0.25in

Laser Cut
Plywood
0.25in

Laser Cut
Plywood
0.125in

3D Printed

Custom

Custom

Custom

Custom

Custom

Custom

Appendix C: Screenshots of Entire Code

1 #include <ESP32Encoder.h>

2 #define BTN1 4 // "Button 1" which will go from safe mode to manual mode and switch between manual and CPU mode
3 #define BTN2 16 // "Button 2" which will force the system to return to the "safe mode” state, preventing any motor actuation until Button 1 is pressed again
4 J/ #define POT 34 // Potentiometer input pin

5 // #define POTPITCH 39

6 #define POT 39

7 #define BIN_1 26

8 #define BIN_2 25

9 #define BIN 3 17

1a #define BIN_4 21

11

12 byte state = 1; // initializes the state, causing us to begin in state 1

13

14 ESP32Encoder encoder;

15

16 //Setup interrupt variables ------------------oo———

17 volatile bool buttonlIsPressed = false;

18 volatile beol button2IsPressed = false;

19 volatile beol deltaT = false; // check timer interrupt 2

20 hw_timer_t * timer® = NULL;

21 hw_timer_t * timerl = NULL;

22 hw_timer_t * timer2 = NULL;

23 portMUX_TYPE timerMux@ = portMUX_INITIALIZER UNLOCKED;

24 portMUX_TYPE timerMuxl = portMUX_INITIALTZER_UNLOCKED;

25 portMUX_TYPE timerMux2 = portMUX_INITIALIZER UNLOCKED;

26

27 float posError = @;

28 int theta = 8;

29 int thetaDes = @;

30 int thetaMax = 11950; // 499 * 24 counts per revolution

31 int D = 8;

32 int potReading

33 float sumError

34 float sumErrorMax = 150; // sets the maximum value for error accumulation to prevent significant windup
35 volatile int count YAW = @;

36 int motor_on = @;

37 float input = @;

38 int yawFlag = @;

39 int Flagl = 8;

40 int restart = @;

a1

42 float Kp = 1; // proportional feedback gain

43 float Ki = @.01; // integral feedback gain

a4 int KiMax = @;

45

46 // setting PWM properties ---—------------————_

a3 const int freq = 5000;

438 const int ledChannel_1

49 const int ledChannel_ 2

50 const int ledChannel 3 =

51 const int ledChannel_4

52 const int resolution = 8;

53 const int MAX_PWM VOLTAGE = 255;

54 const int HOM_PWM_VOLTAGE = 158;

55

56 f/Initialization -- -~~~ -~ - - - -

57 void IRAM_ATTR isrl{) { // the function to be called when interrupt is triggered on Button 1 press
58 buttonlIsPressed = true; // buttonIsPressed will act as our debounce flag

59)

60

61 // temporarily commented cut due to potentiometer use instead of Button 2 for this assignment
62 void IRAM ATTR isr2() { // the function to be called when interrupt is triggered on Button 2 press
63 button2IsPressed = true; // buttonIsPressed will act as our debounce flag

&}

65

66 //Initialization Timer --—---—-------m

67 void IRAM ATTR onTime@() { // function called by timer®

68 timerStop(timer@);

9}

70

71 void IRAM ATTR onTimel() { //function called by timerl

72 timerStop(timerl);

73 3}

74

75 void IRAM ATTR onTime2() { // function called by timer2

76 portENTER_CRITICAL_ISR(&timerMux2); // mux statements used to ensure inputs/readings coming in simultaneously are properly received
77 deltaTl = true; // this flag's value to changed to cause our main loop to be ran whenever the onTime2() function is called by timer2
78 portEXIT_CRITICAL ISR(&timerMux2);

79}

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

1e1
1082
1e3

185
186
187
108
189
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
1le@
161
162
163
164
165
166
167
168
169
17@
171
172
173
174
175

void Timer@InterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 88MHz, we will have 88,000,000 Tics.
timer® = timerBegin(®, 8@, true); // divides the frequency by the prescaler: 802,000,000 / 80 = 1,000,000 tics / sec

timerAttachInterrupt(timer®, &onTimed, true); // sets which function do you want to call when the interrupt is triggered
timerAlarmirite(timerd, 2000000, true); // sets how many tics will you count to trigger the interrupt
timerAlarmEnable(timer@); // Enables timer

1

void TimerlInterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 8@MHz, we will have 88,000,000 Tics.
timerl = timerBegin(1, 8@, true); // divides the frequency by the prescaler: 8@,000,000 / 80 = 1,000,000 tics / sec

timerAttachInterrupt(timerl, &onTimel, true); // sets which function do you want to call when the interrupt is triggered
timerAlarmirite(timerl, 2000000, true); // sets how many tics will you count to trigger the interrupt
timerAlarmEnable(timerl); // Enables timer

1

void Timer2InterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 8@MHz, we will have 82,000,000 Tics.
timer2 = timerBegin(2, 8@, true); // divides the frequency by the prescaler: 8,000,000 / 80 = 1,000,000 tics / sec
timerAttachInterrupt(timer2, &onTime2, true); // sets which function do you want to call when the interrupt is triggered
timerAlarmirite(timer2, 25000, true); // sets how many tics will you count to trigger the interrupt
timerAlarmEnable(timer2); // Enables timer

void setup() {
// put your setup code here, to run once:
Serial.begin(11520@); // sets baud rate
pinMode(BTN1, INPUT); // specifies the BTNl pin as an input
attachInterrupt(BTN1, isrl, RISING); // attaches hardware interrupt to the BTN1 pin which will trigger the function isrl on the rising edge of the signal
pinMode(BTN2, INPUT); // temporarily unused due to potentiometer
attachInterrupt(BTN2, isr2, RISING); // attaches hardware interrupt to the BTN1 pin which will trigger the function isr2 on the rising edge of the signal
pinMode(POT, INPUT); // specifies POT pin as an input

f/ initializing three timers used
Timer8InterruptInit(};
TimerlInterruptInit();
TimerZInterruptInit(};

/! yaw encoder setup

ESP32Encoder: :useInternalWeakPullResistors = UP; // Enable the weak pull up resistors
encoder.attachHalfQuad(32, 15); // Attache pins for use as encoder pins
encoder.setCount(@); // set starting count value after attaching

// configure LED PWM functionalitites

ledcSetup(ledChannel_1, freq, resolution);
ledcSetup(ledChannel_2, freq, resolution};
ledcSetup(ledChannel_3, freq, resolution};
ledcSetup(ledChannel_4, freq, resolution);

// attach the channel to the GPIO to be controlled
ledcAttachPin(BIN_1, ledChannel_1);
ledcAttachPin(BIN_2, ledChannel_2);
ledcAttachPin{BIN_3, ledChannel_3);
ledcAttachPin(BIN_4, ledChannel_4);

void loop() {

if (deltaT) {
// portENTER_CRITICAL (&timerMux2);
deltaT = false;
// portEXIT_CRITICAL(&timerMux2);

switch (state) {

case 1: // Safe state with no motor operation at all
motorsoff();
Serial.println(" ");
Serial.println("Safe state."); // statement that reads out in the serial monitor since we're initialzing the system into state 1
if (CheckForButtonlPress() == true) { // event checker to see if Button 1 was pressed
Serial.println("New in manual motor control mode.");
ButtonlResponse(); // function response for when Button 1 has been pressed
state = 2; // switches system to manual motor control mode

¥

break;

case 2: // Manual input mode / Button 1 press to go to computer motor control / Button 2 press to return to safe state

POT_yaw_contrel(); // function continuously called to allow potentiometer position to control motor position
motor_on_flag();
if (CheckForButtonlPress() == true) { // event checker to see if Button 1 was pressed

Serial.println(™ ");

Serial.println("Now in computer control mode.");

Serial.println(“"Please enter the desired theta wvalue in integer form between @ and 11958.");

ButtonlResponse(); // function response for when Button 1 has been pressed

state = 3; // switches system to computer control mode

if (CheckForButton2Press() == true) { // event checker to see if Button 2 was pressed
Serial.println(” ");
Serial.println(“Now in the safe state.");
Button2Response(); // function response for when Button 2 has been pressed
state = 1; // switches system to safe state -- no motor control

i
break;

case 3: // Computer input mode / Button 1 press to go to manual motor control mode / Button 2 press to return to safe state
if (motor_on == 1) {
motorsoff(); // function called to ensure motors are not operating

3

176
177
178
179
180
181
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
218
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

=

CPU_yaw_contrel(); // function called to allow for computer control of motor position

if (CheckForButtonlPress() == true) {
ButtonlResponse(); // function response for when Button 1 has been pressed
Serial.println(™ ");
Serial.println("New in manual control mode.");
state = 2; // switches system to manual motor control mode

¥
if (CheckForButton2Press() == true) { // event checker to see if Button 2 was pressed
Serial.println(" ");
// Serial.println(“Now in computer control mode.");
Serial.println("Now in the safe state.");
Button2Response(); // function response for when Button 2 has been pressed

state = 1; // switches system to safe state -- no motor control
¥
break;
¥
}
}
Jf e

// Set up functions below to serve as ewvent checkers and some event responses

bool CheckForButtonlPress() {
if (timerStarted(timer@}) {
buttonlIsPressed = false;
return false;
i
else {
if (buttonllsPressed) {
buttonlIsPressed = false;
return truej
¥
else {
return false;
¥
)
}

void ButtonlResponse() {
Serial.println("Button 1 Pressed!");
buttonlIsPressed = false;
timerStart(timer@);

¥

bool CheckForButten2Press() {

if (timerStarted(timerl)) {

button2IsPressed = false;
return false;

¥

else {

if (button2IsPressed) {
button2IsPressed = false;
return true;

else {
return false;
i
i
}

void Button2Response() {
Serial.println{"Button 2 Pressed!");
button2IsPressed = false;
timerStart(timerl);

¥

void motorsoff() {
ledcWrite(ledChannel_3, LOW);
ledckrite(ledChannel_4, LOW);
motor_on = @;

void CPU_yaw_control() {

if ((Serial.available() > @) && (Flagl == @)) {
Serial.println({“"Please enter the desired theta value in integer form between @ and 11950.");
thetaDes = Serial.parselnt();

if (thetaDes > thetalax) {
thetaDes == thetaMax;

I3
yawFlag =
Flagl = 1;

¥

if ((Serial.available() > @) &% (Flagl == 2)) {
Serial.println("Please enter the desired theta value in integer form between @ and 1195@.");
thetaDes = Serial.parseInt();

if (thetaDes > thetaMax) {
thetaDes == thetaMax;

3
yauFlag
Flagl =

1:

=1;
1;

270 }

271

272 if (yawFlag == 1) {

273 count_YAW = encoder.getCount();

274 encoder.clearCount ();

275 theta += count_YAW;

276 Serial.print(“thetades:);

277 Serial.print(thetaDes);

278 Serial.println("");

279 Serial.print{“theta: ");

280 Serial.print(theta);

231 Serial.println("");

282 posError = thetaDes - theta;

283 sumErrer = sumError + posError;

234 if ((sumError > @) &% (sumError > sumErrorMax)){
285 sumError = sumErrorMax;

286

287 else if ((sumError < @) && (sumError < -sumErrorMax)) {
288 sumError = -sumErrorMax;

289 }

290 else {

291 sumError = sumError;

292 }

293 D = (Kp * posError + Ki * sumError);

294

295 //Ensure that you don't go past the maximum possible command
296 if (D > NOM_PWM_VOLTAGE) {

297 D = NOM_PWM_VOLTAGE;

298

299 else if (D < -NOM_PWM_VOLTAGE) {

300 D = -NOM_PWM_VOLTAGE;

301 }

382

383 //Map the D value to motor directionality

304 //FLIP ENCODER PINS SO SPEED AND D HAVE SAME SIGN
305 if (D> 0) {

306 ledcWrite(ledChannel_3, LOW);

387 ledcWrite(ledChannel_4, D);

308 }

309 else if (D < @) {

310 ledcrite(ledChannel_3, -D);

311 ledcWrite(ledChannel_4, LOW);

312 }

313 else {

314 ledchrite(ledChannel_3, LOW);

315 ledchrite(ledChannel_4, LOW);

316 }

317

318 if ((abs(thetaDes - theta) < 100) & (Flagl == 1)) {
319 motorsoff();

320 if (Serial.available() > @) {

321 Serial.println("Please enter the desired theta value in integer form betwesen @ and 11950.");
322 restart = Serial.parselnt();

323 if (restart == 1) {

324 Flagl = 2;

325 yawFlag = ©;

226 1

327 else {

328 Flagl = @;

329 yawFlag = @;

330 i

331 }

332 yauFlag = @;

333 Flagl = 2;

334 }

335}

336

337 void POT_yaw_contrel() {

338 count_YAW = enceder.getCount(};

339 encoder.clearCount ();

340 theta += count_YAW;

341 potReading = analogRead(POT);

342 thetaDes = map(potReading, @, 4095, @, thetaMax);
343 Serial.println(™ ");

344 Serial.print(“thetaDes: ");

345 Serial.print(thetaDes);

346 posError = thetaDes - theta;

347 sumError = sumError + posError;

348 if ((sumError > @) &% (sumError > sumErrorMax)){
349 sumError = sumErrorMax;

358

351 else if ((sumError < @) && (sumError < -sumErrorMax)) {
352 sumError = -sumErrorMax;

353 }

354 else {

355 sumError = sumError;

356 }

357 D = (Kp * posError + Ki * sumError);

358

359 //Ensure that you don't go past the maximum possible command
360 if (D > NOM_PWM_VOLTAGE) {

261 D = NOM_PHM_VOLTAGE;

362
363

365
366
367
368
369
37@
371
372
373
374
375
376
377
378
379
38@
381
382
383
384
385

}

¥

else if (D < -NOM_PWM_VOLTAGE) {

D = -NOM_PWM_VOLTAGE;

//Map the D value to motor directionality
//FLIP ENCODER PINS SO SPEED AND D HAVE SAME SIGN

if (D> @) {
ledcWrite(ledChannel_ 3,
ledcWrite(ledChannel_4,

¥

else if (D < @) {
ledcWrite(ledChannel_3,
ledcWrite(ledChannel_4,

)

else {
ledcWrite(ledChannel_ 3,
ledcWrite(ledChannel_4,

i

void motor_on_flag() {

}

motor_on = 1;

LOW) ;
D);

-0);
LOW);

LOW) ;
LOW);

