ME102B Final Report

Team 17: Eugene Chen, Luke Gargotta, Maylene Vong, Alex McNamara

1)
Opportunity:

Many people like to relax at the beach, their home, or other areas with an umbrella to keep them in the
shade. As the direction of the sun’s rays change throughout the day, it can be upsetting having to get out of
your state of leisure to stand up and adjust the umbrella. With our device, Sol Guard, you can now change the
direction of the umbrella with just two fingers.

2)
High Level Strategy:

In order for the user to easily adjust the position of the umbrella shade, we decided to use a
potentiometer with velocity control to accurately move the shade— quicker as the potentiometer is turned to the
extremes or slower, and thus more accurately toward the neutral, middle zone. We designed for the limit
switches to be 90 degrees from the vertical on both sides of our product in order to keep the umbrella upright.

For our mechanical design, we initially had three main ideas for the transmission. One idea was to
utilize a transmission belt between the motor and a gearbox through an umbrella base. The second idea was
to use a set of bevel gears to actuate a shaft through the umbrella base to the gearbox. Ultimately, we decided
to opt for a worm gear system which enabled the transmission system to lie at the pivot point of the umbrella
stand. Our transmission included three total gears amassing to a gear ratio of 40:1. By using this method, we
were able to use a smaller motor which enabled a more discrete housing for which the umbrella actuated from.

A main advantage of the worm gear is to prevent backdriving through the transmission system. A fear
we had with this project was we didn’t want the motor to need to be actuated at all times to ensure the position
of the umbrella. For this reason, the worm gear prevents backdriving and keeps the umbrella in its correct
position after actuation. This method was best suited for our project as we minimized energy consumption and
motor fatigue through this application of the worm gear system.

We initially wanted to utilize temperature sensors in order to track the sunlight’s position and move the
umbrella shade to always cover the user; however, due to time and financial constraints, we decided to focus
on one degree of freedom and use a potentiometer instead. We also wanted the umbrella to have an uniaxial
rotation of 180 degrees, but ended up with a 160 degree rotation due to the activation of our limit switches
preventing it from going further.

Function-Critical Decisions:

One of the most critical calculations to perform was whether or not we had enough torque supplied for our
system to move the umbrella in any position of its rotation. We also want our umbrella to remain at the location
it is when the motor isn’t running, which led us to designing a non-backdrivable transmission.

Calculations:

The max torque required of the system is as follows.

T _max = (W_umbrella)*(L_pvc) + (W_pvc)*(L_pvc/2)

T_max = (0.5251b)*(1ft) + (2Ib)*(0.5ft)

T_max = 1.525ft*Ib

Our transmission system consists of a 60:1 and 1:1.5 gear ratio, leading to an overall gear ratio of 40:1.

While the motor from our lab kit did meet the required torque for our system, it could only handle half a ft*Ib
more than the max torque required. This poses a couple of issues. Frictional forces would cause the motor to
have to work harder. Any unexpected radial loading will act as a bending moment on the shaft of the motor,
causing the motor to have to work harder to move the system. Also, our motor has a small shaft (3mm) relative
to all the components in our transmission system being closer to 5mm to 6mm.

Calculations for new motor chosen:
Stall torque: 1.3 ft*lb
T_motor = (60% duty cycle)*(stall extrapolation)*(gear ratio)

T_motor = (0.6)*(1.3ft*Ib)*(40)
T_motor = 31.24 ft*Ib

5)
Circuit Diagram:

]

State Transition Diagram:

Tnitiali 28

limrt Switgh 4,/

& not limigw; a!i n | "“*"SWHMS&MG@ '

|

. | |

i Sufri'ch o
[T+ Switch ol sefyice
& stof modor |

Note: D is our velocity error which helps us determine if we are moving left or right.

Reflection:

For the transmission, we had some issues with the shafts becoming disengaged with their associated
parts. While we did try and mitigate this problem via set screws and perpendicular compression, ultimately the
system would loosen over time and need to be recalibrated intermittently. To combat this, we would suggest
using a more secure method such as key or pin through the shaft would have provided perpendicular stability
to the parts adjoined to the shafts. Our advice would be to start early so that you have time to fine tune any
issues you may have before any deadlines.

Appendix A: BOM

ltem Name Description Purchase Justification Serial Number / SKU Price (ea.) Quantity

smim steel rods 5mm HSS Lathe Bar 200mm Long Part of fransmission system connec] 18102100ux0119
Umbrella 34" Diameter Elastic Umbralla Project surrounds actuated umbrell F3-32Cs36-3L

émm Lock collars 10pc émm lock collars Keep components tagether in tran: ASIN: BOBTC4XX&5
smm Flanged ball k 6x13x5mm Chrome Steel, flanged k Constrain shaft rotation for émm roc 1909 1100ux063% ASI
smm Flanged Ball E 5x11x4mm Shielded Chrome steel E Constrain shaft retation for Smim roc al9091100ux0573 AS
5mm lock collars 10 Pcs Lock Collar 5mm Shaft Lock Keep components together in tran: BEC38-f ASIN: BOBMET
flexiple shoft couplt 3mm to Smm Aluminum Alloy Shaft part of transmission system. connec a20112600ux0020 ASI
smm steel rods émm HSS Lathe Bar 200mm Long Part of transmission system, allowing 18103100ux0126 AS
34 tooth gear 34T Steel 32p Pinion Gear 5mm Bore Used to achieve nacessary gear ra ASIN: BO7THEQLJJ
worm gear + worm .5 modulus 5mm Hole 40 T Turbine R Weorm wheel used to achieve gear ASIN: BO7GS5J12WH
Limit switches 10pecs Micro Limit Switch KW12-3 AC Used to define limits of umbrella rot 3-01-1546 ASIN: BO7X1
worm gear + worm 0.5 Modulus Brass Metal Speed Red both components used to atfain ng M&120801079 ASIN: B
1/4" plywood 24" x 48" plywood For creating the base of cur umbre -

Full list of materials including those pre-owned

Appendix B: CAD

https://docs.google.com/spreadsheets/d/1R2CLGfrR_Chv-umGl9UwJ4yqyw7BXuwuPNtRV4VqO_k/edit#gid=945847963

Appendix C: Code

stateCode(showcaseFinalCode) ino

1 #include <ESP32Encoder.h>

#define BTN® 15 // limit switch @

#define BTN1 32 // limit switch 1

#define POT 14 // CHANGE POTENTIOMETER PIN HERE TO MATCH CIRCUIT IF NEEDED
#define BIN_ 1 26

#define BIN 2 25

ESP32Encoder encoder;

[l s B = N L

1@ int omegaSpeed;

11 int omegaDes = 5;
12 int omegaMax = 20;
13 int D;

14 int potReading;

15 int error;

16 int sumError;

17

18 int state;

19

20 // state ® = initialization state

21 // state 1 = in between state

22 // state 2 = limit switch @ actuated

23 J// state 3 = limit switch 1 actuated

24

25 int Kp = 18; // TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE

26 int Ki .23
27 int KiMax = 100;

28

29 //Setup interrupt variables -----------------———____
38

31 volatile bool limitSwitcheActive = false;

32 volatile bool limitSwitchlActive = false;

33

stateCode(showcaseFinalCode).ino

34 volatile int count = @; // encoder count

35 int totalInterrupts = @; // counts the number of triggering of the alarm
36 hw_timer t * timere;

37 hw timer t * timerl;

38

39 [/ setting PWM properties -------------—----o————-

49 const int freq = 5000;
41 const int ledChannel 1
42 const int ledChannel 2
43 const int resolution = 8;

a4 const int MAX PWM VOLTAGE = 185;
45 const int NOM_PWM VOLTAGE = 150;

[l
Pl =
[P

416

47 //Initialization --------------------- -
438

49 void IRAM_ATTR onTimee() {

5@ timerStop(timera);

51}

52

53 void TRAM ATTR onTimel() {

54 timerStop(timerl);

55}

56

57 void timerInterruptionInit() {

58 timer® = timerBegin(e, 88, true);

59 timerAttachInterrupt(timere, &onTime@, true);
60 timerAlarmhirite(timere, 5@E5, true);

61 timerAlarmenable(timer®);

62 timerstop(timere);

63

64 timerl = timerBegin(e, 8@, true);

65 timerattachInterrupt(timerl, &onTimel, true);

66 timerAlarmWrite(timerl, 5E5, true);

stateCode(showcaseFinalCode).ino

e Limer Lo — e DCBJ.II\U) o, i UC},
65 timerAttachInterrupt(timerl, &onTimel, true);
66 timerAlarmWrite(timerl, 5E5, true);
67 timerAlarmenable(timerl);

68 timerstop(timerl);

69 }

70

71 void IRAM ATTR isrLimitswitche() {
72 limitswitcheActive = true;

73}

74

75 void IRAM ATTR isrLimitSwitchi() {
76 limitswitchlActive = true;

77}

78

79 // put your setup code here, to run once:
80 void setup() {

81 pinMode(POT, INPUT);

82 pinMode(BTN®, INPUT);

83 pinMode(BTN1, INPUT);

84

85 attachInterrupt(BTN®, isrLimitSwitche, RISING);

86 attachInterrupt(BTN1, isrLimitSwitchl, RISING);

87

88 Serial.begin(115200);

89 ESP32Encoder: :useInternaliWeakPullResistors = UP; // Enable the weak pull up resistors
90 encoder.attachHalfQuad(33, 27); // Attache pins for use as encoder pins
91 encoder.setCount(@); // set starting count value after attaching

92

93 // configure LED PWM functionalities

94 ledcsetup(ledcChannel 1, freq, resolution);

95 ledcSetup(ledChannel_2, freq, resolution);

96

stateCode(showcaseFinalCode).ino

kY E— [.-

96

97 // attach the channel to the GPIO to be controlled
98 ledcattachPin(BIN 1, ledChannel 1);

99 ledcAttachPin(BIN 2, ledChannel 2);

168

101 // at least enable the timer alarms

102 timerInterruptionInit();

183 }

104

105 void loop() {

166

107 switch (state) {

108 case @: // initialization state

109 updateEncoderPosition();

118 Serial.println("state 8");

111 1t (checkForLimitSwitchePress()) {

112 Serial.println("limit switch © actuated");
113 limitSwitcheservice();

114 state = 2;

115 } else if (checkForLimitswitchiPress()) {
116 Serial.println("limit switch 1 actuated");
117 limitswitchiservice();

118 state = 3;

119 } else {

128 state = 1;

121 }

122 break;

123

124 case 1: // 1in between state

125 Serial.println("state 1");

126 updateEncoderPosition();

127 if (checkForLimitSwitchePress()) {

128 limitswitcheservice();

stateCode(showcaseFinalCode).ino

127 if (checkForLimitswitchepPress()) {
128 limitswitchesService();

129 stopMotor();

138 state = 2;

121 } else if (checkForLimitSwitchiPress()) {
132 limitswitchlService();

133 stoprotor();

134 state = 3;

135 } else {

136 moveMotor();

137 }

128 break;

139

148 case 2: // limit switch @ actuated state
141 Serial.println("state 2");

142 updateEncoderPosition();

143 if (D > 125) { // position control code away from limt switch @
144 moveMotor();

145 state = 1;

146 }

147 break;

148

149 case 3: // limit switch 1 actuated state
150 Serial.println("state 3");

151 updateEncoderPosition();

152 if (D < -125) { // position control code away from limt switch 1
153 moveMotor();

154 state = 1;

155 }

156 break;

157 1

158}

159

stateCode(showcaseFinalCode).ino

158 }

159

160 void stopmMotor() {

161 ledcWrite(ledChannel 1, LOW);

162 ledcWrite(ledChannel 2, LOW);
163}

164

165 void updateEncoderPosition() {

166 count = encoder.getCount();

167 encoder.clearCount();

168 omegaspeed = count;

169 potReading = analogRead(POT);

170 omegaDes = map(potReading, ©, 4095, -omegaMax, omegaMax);
171 error = omegaDes - omegaSpeed;

172 sumeError += error;

173 D = Kp * error + Ki * sumError;

174

175 if (D > MAX_PWM VOLTAGE) {

176 D = MAX PWM VOLTAGE;

177 } else if (D < -MAX_PWM VOLTAGE) {
178 D = -MAX PWM VOLTAGE;

179 }

180 }

181

182 void moveMotor() {

183 if (D > @) {

184 ledcWrite(ledChannel 1, LOW);
185 ledcWrite(ledChannel 2, D);
186 }

187 else if (D < @) {

188 ledcWrite(ledChannel 1, -D);
189 ledcWrite(ledChannel 2, LOW);

196 1

stateCode(showcaseFinalCode).ino

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
285
206
287
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

b
else {
ledcWrite(ledChannel 1, LOW);
ledcWrite(ledChannel 2, LOW);
}

¥

bool checkForLimitSwitchePress() {
it (timersStarted(timere)) {
limitSwitcheActive == false;
Serial.println("teste");
return false;
¥
else{
if(limitSwitcheActive == true){
Serial.println("test2");
return true;

}
else{

Serial.println("test1");
return false;

}
¥
h

bool checkForLimitSwitchilPress() {

if (timerstarted(timerl)) {
limitSwitchlActive == false;
return false;

¥

else{
if(limitswitchlActive == true){

return true;

stateCode(showcaseFinalCode).ino

207 1

208 else{

209 Serial.println("test1");
210 return false;

211 1

212 1

213}

214

215 bool checkForLimitSwitchlPress() {
216 it (timerstarted(timeril)) {
217 limitSwitchlActive == false;
218 return false;

219 1

220 else{

221 if(limitSwitchlActive == true){
222 return true;

223 1

224 else{

225 return false;

226 1

227 1

228 }

229

230 void limitSwitcheservice() {
231 limitSwitcheactive = false;
232 timerRestart(timere);
233}

234

235 volid limitSwitchiService() {
236 limitSwitchlActive = false;
237 timerRestart(timerl);
238}

239

