ME102B Final Report

Fall 2023

Nikolas Papaeracleous, Leo Li, and Victor Mello

i. FOREWORD

We would like to kindly thank the ME102 teaching team (Prof. Hannah, and GSIs Amber and Deaho), the Etcheverry Shop staff (Alex, Dennis, Eric, and Katherine), and the Hesse staff (Mike, and Tom) for providing the resources and orientation that made this project possible.

1. OPPORTUNITY AND SOLUTION

The device was designed to address the optimization opportunity Industrial waste brainstormed in P2. Given that not everyone is educated in trash selection, recycling stations often need an extra filtering layers, and the correct procedures are key drivers in fighting global waste and climate change. For that, the adopted strategy was of an automated conveyor belt system that filters the trash depending on its color. While the actual application of this device would make the sorting based on material, and not color, the purpose of the current prototype is to comply with a student budget and seed the idea for a bigger application, showing that it is feasible, applicable, and impactful.

After the ON button is pressed, the sorting arms are raised, and the belt begins to move slowly. The object is then loaded at the beginning of the conveyor, and has its color read by the sensor, which will return the most predominant color: red, green, or blue. As soon as the color sensor gives off any relevant reading, the belt then is powered to move at a faster speed and the sorting arms are lowered according to color, redirecting the object to the determined path (left, middle, or right). After 10 seconds elapse, the object will have been successfully redirected, then the sorting arms are raised again, and the belt slows down so another object can be placed.

2. DESIGN CHOICES AND CALCULATIONS

Having the project's objective defined, the following step was to run a thorough design phase, aiming for a smooth manufacturing phase with no reassessments of materials and dimensions that would cost time and money.

2.1. REQUIRED DC MOTOR SPEED

To calculate a suitable DC motor speed, we must first find the relationship between the conveyor's belt linear speed and the motor's angular speed:

$$v = \frac{\omega_m r_1}{r_2} r_r$$

Where v is the belt's linear speed, ω_m is the motor's speed, r_2 and r_1 are the radii of the driven and the driver timing pulleys, and r_r is the roller radius. The parameter chosen to guide the motor choice was the time it would take for the object to travel through the belt from end to end at the high speed, which in this case was 1 second. Then, we can calculate the required motor speed, for the chosen pulleys and rollers:

$$\omega_m = v \frac{r_2}{r_r r_1} = \left(\frac{0.40m}{1s}\right) \frac{10.05 * 10^{-3}m}{13.30 * 10^{-3}m * 8.05 * 10^{-3}m} = 37.55 \left(\frac{rad}{s}\right) = 358.55 \ rpm$$

2.2. REQUIRED DC MOTOR TORQUE

The calculation of the required torque to power the conveyor belt can be complex. Modelling analytically the total friction of an object over belt sliding over the MDF wood panel is difficult, and, with the necessary preloading of the belt, the frictions losses inside the bearings will surely increase. So, instead of finding an analytical relation, we will only consider the friction between the belt and the wood, under the weight of one object (in our case, the objects will be 3D-printed PLA cubes) and multiply it by a safety factor.

$$\tau_{m,60\%} > F_{friction} \frac{r_r r_1}{r_2} \eta = \frac{(mg\mu)r_r r_1}{r_2} \eta = \frac{(a^3 \rho_{pla} g\mu)r_r r_1}{r_2} \eta$$

Where $\tau_{m,60\%}$ is 60% of the motor's stall torque, a^3 is the volume of the PLA block, ρ_{pla} is the PLA's density, g is the gravity, μ is the dynamic friction coefficient between rubber and wood, and η is a safety factor of 3.0. It is worth noting that friction coefficient of rubber varies greatly with the surface treatment it receives. Ideally, the value for our prototype should be calculated experimentally. From the *Engineering ToolBox*TM, we can infer that the coefficient will be greater than 0.5. We will use 0.5 for a safer calculation.

$\tau_{m,60\%} > 0.05 \ kg * cm$

As it may be visible, the required torque value obtained is too low. Obviously, for simply dragging PLA blocks through a wooden surface the value may be reasonable, but calculating the actual torque needed for our project would involve machine design calculations out of the class's scope. For that reason, the motor used in the prototype was chosen under the Hesse's lab staff orientation. The chosen motor can be found through this <u>link</u>.

2.3. REQUIRED SERVO MOTOR TORQUE

We can calculate the required servo motor's torque by considering the resistance torque due to the sorting arm's weight:

$$\tau_{min} = lmg = 0.1m * 24 * 10^{-3}kg * 9.81\left(\frac{m}{s^2}\right) = 0.0236 Nm$$

Where *l* is the horizontal distance of the centroid to the servo's attaching point, *m* is the arm's mass, and *g*, the gravity. Given that the chosen servo's torque @ 5V is 0.98 *Nm*, the servo motor choice is assumed to be safe.

2.4. RADIAL FORCE ON BALL BEARING

The radial force on the ball bearings will be due to the preloading of the conveyor belt, which is necessary to prevent belt slippage. We shall use equation 17-9 from Shigley, 2011:

$$F_i = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1}$$

Where F_i is the preload force, T is the transmitted torque (60% of the chosen motor's stall torque), d is the roller diameter, f is the static friction coefficient between the belt and the roller, and ϕ the wrapping angle.

$$F_i = \frac{T}{d} \frac{\exp(f\phi) + 1}{\exp(f\phi) - 1} = \frac{1.3Nm}{0.0266m} \frac{\exp(0.7\pi) + 1}{\exp(0.7\pi) - 1} = 61.09N = 30.54N \text{ on each bearing}$$

Given that the static and dynamic maximum radial loads of the bearings are 146.80N and 186.30N, the bearing choice is assumed to be safe.

2.5. TIMING BELT CENTER DISTANCE

In order to position the timing pulleys according to the chosen timing belt, the center-center distance between the two pulleys was calculated using the following formula provided by $McMaster^{TM}$:

$$d = \frac{C_{outer} - 1.6(D_1 + D_2)}{2}$$

Where d is the center distance, C_{outer} is the belt's outer circumference, D_1 and D_2 are the two pulleys' diameters. Given that timing belts don't need to be preloaded (Shigley, 2011), the resulting d value is sufficient to define the pulleys' positioning.

2.6. DC MOTOR SHAFT RADIAL LOAD

Given that the timing belt does not require pre-tensioning, there is no load exerted on the motor's shaft, given that the motor's weight is supported fully by the MDF cavity, and the screws attached to the 3D printed mount plate.

3. RESULTS

After completing the design and manufacturing phases of the project, the device was then finalized.

Given that the device separates the objects correctly, the sensor reads the colors accurately, and the motors rotate smoothly within the given loads, all the non-measurable goals were accomplished. One measurable goal, however, that we can compare between the desired and achieved value is the time it takes for a full belt cycle. The desired value was 1 second, and the achieved one was 1.23 seconds.

4. CONCLUSION

Overall, the project progressed smoothly. Even with other courses demanding the time and energy of the members, we managed to plan ourselves accordingly. This remarks the importance of a good practice adopted by us: to always be transparent between ourselves, constantly communicating our availability, thoughts, and progress on a given task. Also, one positive thing we did was to be as clear as possible in the division of tasks and in the expected results and deadlines, so then each member could organize his personal time to deliver the expected result. One thing, however, that we wish we had done different was prototyping. That is, to test with materials and dimensions on a smaller scale to get a sense of the results. If we had, at an early stage, implemented a mid-fidelity prototype, we could had avoided the issue, or at least had figured it out sooner, of having to replace the motor for a stronger one because of the intrinsic manufacturing tolerances and inaccuracies that led the ball bearing housings to be slightly eccentric, causing an unpredicted load on the shaft. Anyhow, even with adversities coming up along the way, we still managed to work our way towards the solution and solve the issues as a team.

5. APPENDIX

5.1. CAD IMAGES

Figure 1: Complete assembly - isometric view

Figure 2: Complete assembly - side view

Figure 3: Complete assembly - front view

Figure 4: Complete assembly - top view

Figure 5: Exploded view of the transmission elements - isometric view

Figure 6: Exploded view of the transmission elements - front view

Figure 7: Exploded view of the sorting arms - dimetric view

5.2. BOM

		BILL OF MATERIALS						
Supplier 💌	Part Identificatio	Description	Req. Qty 🔻	Order Qty 🔻	Unit of Measur	Price 💌		Total 💌
		MXL Series Timing Belt Pulley for 6 mm Maximum Belt Width, 20.1 mm OD, 2						
McMaster	1375K132	Flanges	1.00	1.0	Each	\$ 16.98	\$	16.98
		Plastic Ball Bearing with 316 Stainless Steel Ball, Trade No. 636, for 6 mm Shaft						
McMaster	6455K114	Diameter	4.00	4.0	Each	\$ 8.53	\$	34.12
McMaster	4143N12	303 Stainless Steel Rotary Shaft 6 mm Diameter, 200 mm Long	2.00	2.0	Each	\$ 13.65	\$	27.30
		MXL Series Timing Belt Pulley for 6 mm Maximum Belt Width, 16.1 mm OD, 2					Ĺ	
McMaster	1375K114	Flanges	1.00	1.0	Each	\$ 15.05	\$	15.05
Pololu	#4846	75:1 Metal Gearmotor 25Dx69L mm HP 12V with 48 CPR Encoder	1.00	1.0	Each	\$ 48.95	\$	48.95
McMaster	48925K92	Standard-Wall Unthreaded Rigid PVC Pipe for Water, 3/4 Pipe Size, 5 Feet Long	1.00	1.0	Each	\$ 7.80	\$	7.80
McMaster	5027N47	MXL Series Timing Belt, 6 mm Wide, Trade Number 75mxl006m	1.00	1.0	Each	\$ 7.11	\$	7.11
McMaster	4634T36	Multipurpose 6061 Aluminum, 10 mm Diameter	0.08	1.0	Per ft	\$ 3.18	\$	3.18
McMaster	9008K53	Multipurpose 6061 Aluminum, 2" x 2"	0.30	0.5	Per ft	\$ 28.15	\$	28.15
McMaster	8974K18	Multipurpose 6061 Aluminum, 1,5" Diameter	0.26	0.5	Per ft	\$ 14.09	\$	14.09
Etcheverry Hall	N/A	PLA Motor Housing	11.06	11.1	tu o	\$ 0.10	\$	1.11
McMaster	91292A020	18-8 Stainless Steel Socket Head Screw M5 x 0.5 mm Thread, 25 mm Long	4.00	1.0	Pack of 100	\$ 8.72	\$	8.72
McMaster	91292A346	18-8 Stainless Steel Socket Head Screw M3 x 0.50 mm Thread, 15 mm Long	24.00	5.0	Packs of 5	\$ 13.00	\$	65.00
McMaster	91292A128	18-8 Stainless Steel Socket Head Screw M5 x 0.8 mm Thread, 20 mm Long	20.00	1.0	Pack of 100	\$ 16.66	\$	16.66
		Belleville Spring Lock Washer 17-7 PH Stainless Steel, for M5 Screw Size, 5.200mm						
McMaster	91235A317	ID, 11.900mm OD	20.00	4.0	Packs of 5	\$ 8.27	\$	33.08
McMaster	90592A095	Steel Hex Nut, Medium-Strength, Class 8, M5 x 0.8 mm Thread	28.00	1.0	Pack of 100	\$ 2.62	\$	2.62
McMaster	90592A085	Steel Hex Nut, Medium-Strength, Class 8, M3 x 0.5 mm Thread	20.00	1.0	Pack of 100	\$ 2.62	\$	2.62
Beffkkip	B09JWK494C	MG996R 55g Metal Gear Torque Digital Servo Motor for Futaba JR RC	2.00	1.0	Pack of 2	\$ 14.99	\$	14.99
		HiLetgo RGB Light Color Sensor Colour Recognition Module RGB Color Sensor						
HiLetgo	TCS34725	with IR Filter and White LED for Arduino	1.00	1.0	Each	\$ 6.99	\$	6.99
Adafruit	PID 3591	Adafruit (PID 3591) HUZZAH32 – ESP32 Feather Board (pre-soldered)	1.00	1.0	Each	\$ 20.95	\$	20.95
Pololu	#2130	DRV8833 Dual Motor Driver Carrier	1.00	1.0	Each	\$ 9.95	\$	9.95
Pololu	#1400	Mini Pushbutton Switch: PCB-Mount, 2-Pin, SPST, 50mA (5-Pack)	1.00	1.0	Packs of 5	\$ 1.49	\$	1.49
Digikey	MFR-25FRF52-200K	200K resistor	1.00	1.0	Each	\$ 0.10	\$	0.10
		Chanzon 3 pcs Breadboard with 830 Tie Points (MB-102) Solderless Prototype Kit						
Chanzon	3PCB-MBB-830	Universal PCB Bread Board Plus 2 Power Rail and Adhesive Back	1.00	1.0	Each	\$ 9.99	\$	9.99
		ELEGOO 120pcs Multicolored Dupont Wire 40pin Male to Female, 40pin Male to						
		Male, 40pin Female to Female Breadboard Jumper Ribbon Cables Kit Compatible						
ELEGOO	B01EV70C78	with Arduino Projects	1.00	1.0	Each	\$ 9.99	\$	9.99
Etcheverry Hall	N/A	Plywood - 1/4" x 18" x 30"	1.00	1.0	Each	\$ 6.25	\$	6.25
		PLA Brackets - All Brackets that will help support the structure (Ultimaker						
Etcheverry Hall	N/A	Filament: Breakaway (priced per gram))	75.50	75.5	g	\$ 0.10	\$	7.55
McMaster	92000A017	18-8 Stainless Steel Pan Head Phillips Screws M2 x 0.4 mm Thread, 10mm Long	2.00	1.0	Pack of 100	\$ 8.05	\$	8.05
McMaster	90592A075	Steel Hex Nut, Medium-Strength, Class 8, M2 x 0.4 mm Thread	2.00	1.0	Pack of 100	\$ 4.00	\$	4.00
Gorilla	N/A	Gorilla Tough & Wide Duct Tape, 2.88" x 25yd, Black, (Pack of 1)	1.00	1.0	Each	\$ 16.98	\$	16.98
	•	ΤΟΤΑΙ					S.	449.82

5.3. CODE SCREENSHOT

The following pages contain the code of the prototype.

We are first uploading the code we are actually using to run the prototype on the showcase, and below it, the version with a PID control we tried to implement that, unfortunately and even with a considerable amount of persistence, didn't work out.

This was the version used in the showcase:

```
🔤 FinalCode | Arduino IDE 2.2.1
File Edit Sketch Tools Help
     → 🖨
                Select Board
                                         -
      FinalCode.ino
         1 // Servo Initialization
         2
            #include <ESP32Servo.h>
             #include <Wire.h>
         3
            #include <Adafruit TCS34725.h>
         4
         5 Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X);
             #include <ESP32Encoder.h>
         6
         7
             ESP32Encoder encoder;
         8
 ₽>
         9 // Servo motors' position constants
        10
             Servo myservo1;
        11
             Servo myservo2;
        12 int up1 = 160;
        13 int down2 = 177;
             int down1 = 82; // back
        14
        15
             int up2 = 115; // front
            int down3 = 155;
        16
        17
        18
             // PI stuff
             int omegaSpeed = 0;
        19
        20 int HiOmegaDes = 13;
        21 int LoOmegaDes = 7;
        22
             int D = 0;
                            // TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE
             int Kp = 10;
        23
        24 float Ki = 3;
        25
             int SumError = 0;
        26
             int e = 0;
        27
        28
            // Conveyor Initialization
             #define BIN 1 26
        29
         30
             #define BIN_2 25
             #define BTN 32 // declare the button ED pin number
        31
```

File Ed	lit Sketch	loois Heip
Ø	€	Select Board -
	FinalCode	e.ino
	32	
_	33	volatile bool ButtonIsOn;
1_)	34	<pre>int RUNTIME1 = 3; // seconds</pre>
	35	<pre>int RUNTIME2 = 10;</pre>
Mk	36	double flag;
	37	uint16_t r, g, b, c;
	38	<pre>int state = 0;</pre>
	39	<pre>hw_timer_t * timer = NULL;</pre>
~~	40	
\sim	41	<pre>// Setting PWM properties</pre>
Q	42	const int freq = 28000;
	43	<pre>const int ledChannel_1 = 1;</pre>
	44	<pre>const int ledChannel_2 = 2;</pre>
	45	const int resolution = 8;
	46	<pre>int MAX_PWM_VOLTAGE = 255;</pre>
	47	<pre>int SLOW_PWM_VOLTAGE = 200;</pre>
	48	
	49	// BUTTON
	50	<pre>void IRAM_ATTR isr() { // the function to be called when interrupt is triggered</pre>
	51	<pre>if (ButtonIsOn && state == 0){</pre>
	52	ButtonIsOn = false;
	53	}
	54	<pre>else if (!ButtonIsOn && state == 0){</pre>
	55	ButtonIsOn = true;
	56	
	57	}

File	Edit Sketch	Tools Help
•) → 🔊	Select Board
P-	FinalCode	2.ino
_	58	
	59	// Encoder timer stuff
1	60	volatile bool deltaT = false;
	61	<pre>hw_timer_t * timer1 = NULL;</pre>
nılı	62	volatile int count = 0; // encoder count
	63	<pre>portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;</pre>
	64	void configureEncoder() {
	65	ESP32Encoder::useInternalWeakPullResistors = UP;
10	66	encoder.attachHalfQuad(27,33);
	67	<pre>encoder.setCount(0);</pre>
Q	68	}
	69	void IRAM_ATTR onTime1() {
	70	<pre>portENTER_CRITICAL_ISR(&timerMux1);</pre>
	71	<pre>count = encoder.getCount();</pre>
	72	encoder.clearCount();
	73	deltaT = true; // the function to be called when timer interrupt is triggered
	74	portEXIT_CRITICAL_ISR(&timerMux1);
	75	}
	76	
	77	// SETUP
	78	vola setup() {
	79	Serial.Degin(115200);
	80	// Times shuff
	81	// Inner Sturr
	82	timer = timersegin(0, 80, true); // divides the frequency by the prescater: 80,000,000 / 80 = 1,000,000 tics / sec
	83	// Button stuff
	04	
	85	attack the print (PTM is PICING).
	87	actacitine rup (bin, 13), kising),
	88	// Configure LED PWM functionalitites
	89	ledcstup(ledchannel 1. freq. resolution):
	90	<pre>ledcSetup(ledChannel 2, freq, resolution);</pre>

File Edit Sketch Tools Help

Ø	→ 🔊	Select Board -
Ph	FinalCode.	ino
	91	
67	92	<pre>// Attach the channel to the GPIO to be controlled</pre>
T	93	<pre>ledcAttachPin(BIN_1, ledChannel_1);</pre>
	94	<pre>ledcAttachPin(BIN_2, ledChannel_2);</pre>
Mh	95	
	96	// Servo stuff
	97	myservo1.attach(12);
	98	myservo2.attach(13);
	99	
\bigcirc	100	// Initialize the color sensor
Q	101	1f (tcs.begin()) {
	102	Serial.printin("Color sensor initialized");
	103	<pre>} else { Conicl unintle("Former initializing color concer");</pre>
	104	Serial.printin(Error initializing color sensor);
	105	}
	106	// Encodon stuff
	107	// Encoder stuff
	100	encoder attachHalfOuad(27,22);
	110	encoder setCount(0):
	111	
	112	5
	113	void offstate(){
	114	ledcWrite(ledChannel 1. LOW):
	115	<pre>ledcWrite(ledChannel 2, LOW);</pre>
	116	<pre>mvservo1.write(down1);</pre>
	117	<pre>myservo2.write(down3);</pre>
	118	}
	119	
	120	<pre>void reading(){</pre>
	121	<pre>ledcWrite(ledChannel_1, LOW);</pre>
	122	<pre>ledcWrite(ledChannel 2, SLOW PWM VOLTAGE);</pre>
	123	<pre>myservo1.write(up1);</pre>
	124	<pre>myservo2.write(up2);</pre>
8	125	}

File	Edit Sketch	Tools Help
		Select Board -
P-	FinalCod	le.ino
	126	
	127	<pre>void RunBlue(){</pre>
우_	128	<pre>ledcWrite(ledChannel_1, LOW);</pre>
	129	<pre>ledcWrite(ledChannel_2, MAX_PWM_VOLTAGE);</pre>
0.0	130	<pre>myservo1.write(up1);</pre>
	131	<pre>myservo2.write(down2);</pre>
	132	}
	133	
÷.	134	<pre>void RunGreen(){</pre>
	135	<pre>ledcWrite(ledChannel_1, LOW);</pre>
\bigcirc	136	<pre>ledcWrite(ledChannel_2, MAX_PWM_VOLTAGE);</pre>
	137	<pre>myservo1.write(down1);</pre>
	138	<pre>myservo2.write(up2);</pre>
	139	}
	140	
	141	<pre>void RunRed(){</pre>
	142	<pre>ledcWrite(ledChannel_1, LOW);</pre>
	143	<pre>ledcWrite(ledChannel_2, MAX_PWM_VOLTAGE);</pre>
	144	<pre>myservo1.write(up1);</pre>
	145	<pre>myservo2.write(up2);</pre>
	146	}
	147	

File	Edit	Sketch	Tools	Help
1 110	Lone	DReten	10013	ncip

Ø	∂ 🚱	Select Board -
Ph	FinalCode.	ino
	148	void LoPID(){
_	149	if (deltaT) {
1_)	150	<pre>portENTER_CRITICAL(&timerMux1);</pre>
	151	deltaT = false;
nh	152	<pre>portEXIT_CRITICAL(&timerMux1);</pre>
ШИ	153	omegaSpeed = count;
	154	e = LoOmegaDes - omegaSpeed;
	155	<pre>SumError = SumError + e;</pre>
2,00	156	<pre>if (D > SLOW_PWM_VOLTAGE) {</pre>
	157	<pre>D = SLOW_PWM_VOLTAGE;</pre>
Q	158	SumError -= e;
	159	}
	160	D = Kp * e + Ki * SumError;
	161	<pre>plotControlData();</pre>
	162	}
	163	}
	164	
	165	void HiPID() {
	166	if (deltaT) {
	167	<pre>portENTER_CRITICAL(&timerMux1);</pre>
	168	deltaT = false;
	169	<pre>portEXIT_CRITICAL(&timerMux1);</pre>
	170	omegaSpeed = count;
	171	e = H1OmegaDes - omegaSpeed;
	1/2	SUMError = SUMError + e;
	1/3	IT (U > MAX_PWM_VOLTAGE) {
	1/4	D = MAX_PWM_VOLIAGE;
	175	Sumerror -= e;
	177	\hat{J}
	170	D = Kp + e + KI + SumError;
	170	procedici ordaca(),
	120	Ĵ l
	100	ĵ

👓 Fi	nalCode Ardu	ino IDE 2.2.1
File	Edit Sketch	Tools Help
) 🔿 🕑	Select Board -
P	FinalCod	e.ino
	181	
_	182	<pre>void plotControlData() {</pre>
۲ <u>–</u>	183	<pre>Serial.print("Speed:");</pre>
	184	<pre>Serial.print(omegaSpeed);</pre>
D-D-	185	<pre>Serial.print(" ");</pre>
Ш	186	<pre>Serial.print("Desired_Speed:");</pre>
	187	<pre>Serial.print(HiOmegaDes);</pre>
	188	<pre>Serial.print(" ");</pre>
¥.	189	<pre>Serial.print("PWM_Duty/10:");</pre>
	190	Serial.println(D/10); //PWM is scaled by 1/10 to get more intelligible graph
Q	191	<pre>//Serial.print(" ");</pre>
	192	<pre>//Serial.print("SE:");</pre>
	193	<pre>//Serial.print(SumError);</pre>
	194	}
	195	

File	Edit Sketo	h Tools Help
Ø	€ 🔊	Select Board 👻
Ph	FinalCode	.ino
	196	// Main loop
	197	<pre>void loop() {</pre>
1	198	<pre>if (!ButtonIsOn){</pre>
	199	offstate();
пњ	200	}
ШИ	201	if (ButtonIsOn){
	202	<pre>switch(state){</pre>
<1	203	case 0:
3	204	<pre>reading();</pre>
	205	LoPID();
Q	206	<pre>tcs.getRawData(&r, &g, &b, &c);</pre>
	207	// Print the color values
	208	<pre>Serial.print("Red: ");</pre>
	209	Serial.print(r);
	210	Serial.print(" Green: ");
	211	Serial.print(g);
	212	Serial.print("Blue: ");
	213	Serial.print(b);
	214	Serial.print(" Clear: ");
	215	Serial.printin(c);
	210	$if(h) = \frac{99}{10000000000000000000000000000000000$
	217	IT (D > r aa D > g aa (>200) {
	210	Rupplus():
	219	Serial println("Switching to blue"):
	221	<pre>flag = timerReadSeconds(timer):</pre>
	222	}
	223	else if $(g > r \& g > h \& c > 200)$
	224	state = 2:
	225	RunGreen();
	226	<pre>Serial.println("Switching to green");</pre>
	227	<pre>flag = timerReadSeconds(timer);</pre>
	228	
	229	else if (r > g && r> b && c>200){
	230	state = 3;
	231	RunRed();
	232	<pre>Serial.println("Switching to red");</pre>
	233	<pre>flag = timerReadSeconds(timer);</pre>
	234	}
	235	break;

And this was the version with the PID implemented:

```
🔤 FinalCode | Arduino IDE 2.2.1
File Edit Sketch Tools Help
      \rightarrow
                 Select Board
                                           *
      FinalCode.ino
         1
             #include <ESP32Encoder.h>
          2
              #include <ESP32Servo.h>
             #include <Wire.h>
         3
              #include <Adafruit_TCS34725.h>
          4
              Adafruit_TCS34725 tcs = Adafruit_TCS34725(TCS34725_INTEGRATIONTIME_50MS, TCS34725_GAIN_4X);
          5
              #define BIN 1 26
          6
              #define BIN_2 25
         7
          8
              #define LED_PIN 13
 #define BTN 32 // declare the button ED pin number
          9
         10
         11
              ESP32Encoder encoder;
         12
              // Servo motors' position constants
         13
         14
              Servo myservo1;
              Servo myservo2;
         15
         16
              int up1 = 160;
         17
              int up2 = 115;
              int down1 = 82; // back
         18
         19
              int down2 = 177; // front
         20
              int down3 = 150;
         21
              // PI
         22
              int omegaSpeed = 0;
         23
              int omegaDes = 18;
         24
         25
              int LOWomegaDes = 8;
              int omegaMax = 26; // CHANGE THIS VALUE TO YOUR MEASURED MAXIMUM SPEED
         26
              int D = 0;
         27
         28
              int Kp = 500;
                             // TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE
              float Ki = 0.1;
         29
              int SumError = 0;
         30
         31
              int e = 0;
         32
              float flag = 0;
         33
         34
              float f = 0;
         35
              volatile bool ButtonIsOn;
         36
```

	File	Edit	Sketch	Tools	Help
--	------	------	--------	-------	------

Ø	→ 🔊	Select Board -
Ph	FinalCode	e.ino
	37	
_	38	volatile int state = 0;
1_)	39	
	40	uint16_t r, g, b, c;
Mh	41	
	42	<pre>//Setup interrupt variables</pre>
	43	<pre>volatile int count = 0; // encoder count</pre>
	44	<pre>//volatile bool interruptCounter = false; // check timer interrupt 1</pre>
~	45	<pre>volatile bool deltaT = false; // check timer interrupt 2</pre>
\bigcirc	46	<pre>int totalInterrupts = 0; // counts the number of triggering of the alarm</pre>
Q	47	<pre>//hw_timer_t * timer0 = NULL;</pre>
	48	<pre>hw_timer_t * timer1 = NULL;</pre>
	49	<pre>//portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;</pre>
	50	<pre>portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;</pre>
	51	
	52	// setting PWM properties
	53	const int freq = 28000;
	54	<pre>const int ledchannel_1 = 1; const int ledchannel_2 = 2;</pre>
	55	const int reachation 2:
	50	const int MAX_DEM_VOLTAGE = 255:
	57	const int NOM DUM VOLTAGE = 200;
	50	CONST THE NON_PWH_VOLTAGE = 200;
	60	//Initialization
	61	void TRAM ATTR onTime1() {
	62	portENTER CRITICAL ISR(&timerMux1):
	63	<pre>count = encoder.getCount();</pre>
	64	<pre>encoder.clearCount ();</pre>
	65	<pre>deltaT = true; // the function to be called when timer interrupt is triggered</pre>
	66	<pre>portEXIT CRITICAL ISR(&timerMux1);</pre>
	67	}
	68	
	69	// BUTTON
	70	<pre>void IRAM_ATTR isr() { // the function to be called when interrupt is triggered</pre>
(8)	71	<pre>if (ButtonIsOn && state == 0){</pre>
	72	ButtonTsOn = false:

Flie Euli Sketch 100is Help	File	Edit	Sketch	Tools	Help
-----------------------------	------	------	--------	-------	------

Ø	→	Select Board -
Ph	FinalCode	ino
	72	ButtonIsOn = false;
	73	}
1_)	74	<pre>else if (!ButtonIsOn && state == 0){</pre>
	75	ButtonIsOn = true;
nh	76	}
	77	}
	78	
	79	void setup() {
~~	80	// put your setup code here, to run once:
\sim	81	<pre>pinMode(LED_PIN, OUTPUT);</pre>
Q	82	<pre>digitalWrite(LED_PIN, LOW); // sets the initial state of LED as turned-off</pre>
	83	
	84	Serial.begin(115200);
	85	ESP32Encoder::useInternalWeakPullResistors = UP; // Enable the weak pull up resi
	86	encoder.attachHalfQuad(27, 33); // Attache pins for use as encoder pins
	8/	encoder.setCount(0); // set starting count value after attaching
	88	// configure LED DEM functionalitites
	09	adcSatun(ladchannal 1 frag resolution);
	90	ledcSetup(ledchannel_1, freq, resolution);
	91	redesecup(redenamer_z, red, resolucion),
	93	// attach the channel to the GPIO to be controlled
	94	<pre>ledcAttachPin(BIN 1. ledChannel 1):</pre>
	95	<pre>ledcAttachPin(BIN 2, ledChannel 2);</pre>
	96	
	97	// initilize timer
	98	<pre>//timer0 = timerBegin(0, 80, true); // timer 0, MWDT clock period = 12.5 ns * T</pre>
	99	
	100	<pre>timer1 = timerBegin(1, 80, true); // timer 1, MWDT clock period = 12.5 ns * TIM</pre>
	101	<pre>timerAttachInterrupt(timer1, &onTime1, true); // edge (not level) triggered</pre>
	102	<pre>timerAlarmWrite(timer1, 10000, true); // 10000 * 1 us = 10 ms, autoreload true</pre>
	103	
	104	// at least enable the timer alarms
	105	<pre>timerAlarmEnable(timer1); // enable</pre>
(8)	106	
	107	// Button stuff

File Edit Sketch Tools Help

		Select Board -
Ph	FinalCode	ino
	108	<pre>pinMode(BTN, INPUT);</pre>
	109	<pre>attachInterrupt(BTN, isr, RISING);</pre>
1	110	
	111	// Servo stuff
ութ	112	<pre>myservo1.attach(12);</pre>
	113	<pre>myservo2.attach(13);</pre>
	114	
	115	<pre>// Initialize the color sensor</pre>
\$	116	<pre>if (tcs.begin()) {</pre>
	117	Serial.println("Color sensor initialized");
Q	118	} else {
	119	Serial.println("Error initializing color sensor");
	120	}
	121	
	122	// Encoder stuff
	123	esp32Encoder::useInternalweakPullkesistors=UP;
	124	encoder setCount(A);
	125	1
	120	5
	128	<pre>void offstate(){</pre>
	129	ledcWrite(ledChannel 1. LOW):
	130	<pre>ledcWrite(ledChannel 2, LOW);</pre>
	131	<pre>myservo1.write(down1);</pre>
	132	<pre>myservo2.write(down3);</pre>
	133	}
	134	
	135	<pre>void reading(){</pre>
	136	<pre>ledcWrite(ledChannel_1, LOW);</pre>
	137	<pre>ledcWrite(ledChannel_2, NOM_PWM_VOLTAGE);</pre>
	138	<pre>myservo1.write(up1);</pre>
	139	<pre>myservo2.write(up2);</pre>
	140	}
	141	
Q	142	void HiPID(){
	143	if (deltaT) {

File	Edit	Sketch	Tools	Help
) 6		Se	elect Board
		InalCode	e.ino	
		144		<pre>portENTER_CRITICAL(&timerMux1);</pre>
_		145		deltaT = false;
Ľ)	146		<pre>portEXIT_CRITICAL(&timerMux1);</pre>
		147		omegaSpeed = count;
Mh		148		//A6 CONTROL SECTION
ШМ	7	149		//Stand-in mapping between the pot reading and motor command.
		150		//CHANGE THIS SECTION FOR P AND PI CONTROL
	•	151		e = omegaDes - omegaSpeed;
2,05		152		SumError = SumError + e;
		153		if (D > MAX_PWM_VOLTAGE)
Q		154		{
		155		D = MAX_PWM_VOLTAGE;
		156		SumError -= e;
		157		}
		158		else if $(D < 0)$
		159		{
		160		D = 0;
		161		SumError -= e;
		162		}
		163		D = Kp * e + Ki * SumError;
		164		//END A6 CONTROL SECTION
		165		//Ensure that you don't go past the maximum possible command
		166		if (D > MAX_PWM_VOLTAGE) {
		167		D = MAX_PWM_VOLTAGE;
		168		}
		169		//Map the D value to motor directionality
		170		//FLIP ENCODER PINS SO SPEED AND D HAVE SAME SIGN
		171		1 + (D > 0)
		1/2		<pre>ledcWrite(ledChannel_1, LOW);</pre>
		173		<pre>leacwrite(leachannel_2, D);</pre>
		174		}
		1/5		else {
		176		<pre>leacwrite(leachannel_1, LOW); leadstraite(leadchannel_2, LOW);</pre>
0		170		<pre></pre>
R		T/8		

👓 Final	Code Ardui	no IDE 2.2.1
File Ed	lit Sketch	Tools Help
$\boldsymbol{\heartsuit}$		Select Board 🗸
	FinalCode	e.ino
	180	<pre>plotControlData();</pre>
<u>-</u>	181	}
ī-J	182	}
	183	
Mh	184	<pre>void RunBlue(){</pre>
	185	HiPID();
	186	}
÷	187	
	188	void RunGreen(){
\bigcirc	189	H1PID();
Q	190	}
	191	
	192	Vola RunRed(){
	193	HIPID();
	194	}
	195	void ContRod()(
	190	void SoftRed(){
	197	myservol.write(upl);
	198	myservoz.write(upz);
	200	<pre>} void SortPlue(){</pre>
	200	myservol write(upl):
	201	myservo2 write(down2):
	202	l
	205	void SortGreen(){
	205	myservol.write(down1):
	206	<pre>myservo2.write(up2):</pre>
	207	}
	208	<pre>void loop() {</pre>
	209	if(!ButtonIsOn) {
	210	offstate();
	211	}
	212	if(ButtonIsOn){
	213	<pre>switch(state){</pre>
8	214	case 0:
	215	reading();

File	Edit Sketo	h Tools Help
Ø	€	Select Board -
Ph	FinalCode	ino
	196	// Main loop
	197	<pre>void loop() {</pre>
°_)	198	<pre>if (!ButtonIsOn){</pre>
	199	offstate();
nh	200	}
ШV	201	if (ButtonIsOn){
	202	<pre>switch(state){</pre>
	203	case 0:
201	204	reading();
\sim	205	LoPID();
Q	206	tcs.getKawData(&r, &g, &b, &c);
	207	// Print the color values
	208	Serial.print("Red: ");
	209	Serial.print(r);
	210	Serial print(Green:);
	211	Serial print(g);
	212	Serial print(Blue:);
	215	Serial print(D);
	214	Serial print(Clear:);
	215	Serial princin(c),
	210	if (h > n & h > q & c > 200)
	217	state = 1
	210	RunBlue():
	220	Serial.println("Switching to blue"):
	221	<pre>flag = timerReadSeconds(timer):</pre>
	222	}
	223	else if $(g > r \& g > b \& c > 200)$
	224	state = 2;
	225	RunGreen();
	226	Serial.println("Switching to green");
	227	<pre>flag = timerReadSeconds(timer);</pre>
	228	}
	229	else if (r > g && r> b && c>200){
	230	state = 3;
	231	RunRed();
	232	<pre>Serial.println("Switching to red");</pre>
	233	<pre>flag = timerReadSeconds(timer);</pre>
	234	
	235	break;

){(00
) }{

```
FinalCode | Arduino IDE 2.2.1
```

