Magnetically-Driven Submersible

Rodrigo Blanco Arce, Kyle Ito, Thomas Fabian Kragerud, Nicholas Chard
Final Project Report — Group 29
MECENG 102B: Mechatronics Design
Department of Mechanical Engineering, University of California at Berkeley

Professor Hannah Stuart

December 14th, 2023.

Opportunity:

One of the biggest challenges of designing a mechatronic device that interacts with water is that
it requires extensive waterproofing and the implementation of specialized parts to avoid damaging
the electronics. The current market for watertight electric motors, bearings, and electrical connec-
tors tends to be very expensive, and of limited availability. This created an opportunity for us to
make a device that can interact with marine environments without the need for specialized elec-
tronic equipment, allowing enthusiasts to create projects that interact with water without breaking
the bank.

High-level strategy:

We have designed a submersible that does not require any specialized watertight electronics
or connections, and only implements consumer-grade electronics. This was achieved by creating a
water-tight chamber that houses all of the electronics (microcontroller, battery, motor, etc.) and
has no physical connections to the outside environment. Inside the water-tight chamber, a DC
motor drives a non-contact magnetic shaft coupler that transmits the shaft power to an external
mechanical transmission that drives the submersible. The water-tight chamber was machined out
of a single piece of Delrin plastic, as a cylinder with only one open end that needed to be made
waterproof. The waterproofing was achieved by using an off-the-shelf oring in between a polycar-
bonate end-plate and the main Delrin hull. We wanted our vehicle to be watertight at 0.5m of
depth for at least 30 minutes and achieve a maximum speed of 0.35 m/s. The vehicle experienced
no leaks when submerged at 0.5m for 45 minutes and achieved a maximum speed of 0.30 m/s as
determined through video footage analysis.

Integrated device:

Figure 1: Full assembly.

Motor Driver DC Motor Bearis) Polycarbonate Endplate (c{ea ight seal against Delrin hull)

Bearings

Polycarbonate Drive

11.1V LiPo Battery
Bulkheads Shaft Shaft Coupler

Figure 2: Assembly without Delrin hull and open fairings for visualization.

Temperature Sensor 3.7V Battery Fuse LEDs O-ring

ESP 32 Rate Gyroscope Potentiometer Flexible Shaft Non-contact magnetic
Coupler Shaft Coupler

Figure 3: Sub-assembly — inside watertight chamber.

Function-critical decisions:

One of the biggest design challenges of this project was packaging all of the elements inside
the main hull and external faring of the submersible while retaining the ability to influence the
fore/aft weight bias to adjust the pitch. To address this, we made a modular design based on a
series of water-jet cut polycarbonate bulkheads that housed the main elements of both mechanical
transmissions and the electronics. The bulkheads sit on longitudinally-spanning threaded rods, and
the spacing between them can be modified by sliding them along these rods. All bearings used to
support both transmissions, inside and outside of the watertight compartment, were press-fitted
into these bulkheads, and the DC motor was directly mounted on one of them. The bearings were
preloaded using disk springs and shaft collars.

For the selection of the motor and magnetic shaft coupler, we performed the following se-
ries of calculations based on our propeller, hull shape, and ultimate desired vehicle speed. Since
the propeller has a Pitch = 0.145 [m/rev|, assuming a Slippage = 50%, the true pitch can
be given as Pitchyn. = Pitch x Slippage = 0.0725 [m/rev]. By setting the desired velocity
for our vehicle to be Vs = 0.35 [m/s], we can solve for the required shaft angular velocity as
QShaftreg = Vies/ Pitchirye = 280 [rpm]. This is the speed at which the propeller would need to
rotate for the vehicle to achieve its target speed.

Next, we can find the torque required to spin the propeller through the water to aid in our
selection of DC motor and magnetic shaft coupler; ensuring that we can both generate and transmit
enough torque to move the submarine. To do so, we approximate the drag force of the vehicle as
Fy= % pCyAV? = 0.2313 [N], where A is the cross sectional area of the hull, p is water density, and
Cgq = 0.5 is the estimated drag coefficient of the hull. Then we can calculate the power required to
move at the desired speed through water as P = F,;V = 0.0782 [W]. Lastly, we can calculate the
required shaft torque due to hydrodynamic forces on the propeller as 7., = g = 0.2753 [kg:mm)].
The maximum torque that both the DC motor and the magnetic shaft coupler could achieve needed
to be higher than this.

Given these constraints, we’ve selected the magnetic shaft coupler to have a Tnaz,,0,, = 69.13
kg-mm, which is well above the minimum required value to ensure that it wouldn’t slip under
normal operating conditions. In order to maximize the speed attainable by our submersible, we
selected the Pololu 37D motor, with a 30:1 ratio gearbox. This motor has a maximum speed of 330
rpm and can produce Tmaz,,... = 140 kg-mm. This satisfies the angular velocity required for the
propeller, taking into account a safety margin to increase motor longevity, while having the ability

to generate a torque larger than the maximum torque that the magnetic shaft coupler can transmit.
The decision of having a motor that can produce a torque that’s considerably larger that what the
magnetic shaft coupler can transmit was made so that if the propeller gets caught in an obstacle,
the magnetic shaft coupler would act as a clutch allowing for slip without stalling the motor.

To adjust the speed of the submarine, we included a potentiometer (analog input) that sets the
maximum PWM signal for the DC motor using an open loop controller. To start the motor, the
encoder (digital input) was used to detect movement of the shaft. The user can then rotate the
propeller in the desired direction, and the motor will start rotating in that same direction. This is
possible since the maximum torque of the magnetic shaft coupler exceeds that needed to manually
rotate the DC motor. A rate gyroscope (IMU) and a temperature sensor were used to stop the
motor by detecting an irregular angular velocity of the submarine as well as potential problems like
overheating. These desired behaviors were achieved through a state machine using event driven
programming in the Arduino IDE on an ESP32 microcontroller.

Circuit Diagram: State Diagram:

Encoder < —70

/motor(ON, PWM)

R I ‘ /LED(Green)
|
i

Rate Gyro > werit
/motor(OFF)
/LED(Yellow)

temp > 30°C
/LED(Red)

Start /motor(OFF), /LED(Blue) —

N U
11.1V| Sparkfun 6-DOF
+

Fuse
7,5A, 31V,

Cytron
Motor Driver

temp < 30°C / LED(Yellow)

Encoder > 70
/motor(ON, -PWM)
JLED(White)

Rate Gyro > werit
/motor(OFF)
/LED(Yellow)

temp > 30°C
/motor(OFF)
JLED(Red)

Discussion:

It took us numerous design iterations to get to the final product presented in this report.
Some of the previous iterations aimed for a completely different functionality. Through discussing
with Professor Stuart and the teaching staff, we realized that they were too ambitious and time
constraints wouldn’t have allowed us to achieve a prototype as refined as the one we have. After
seeing our results, we are convinced that making a device that elegantly performs an arguably
simple task is much better than trying to make a design with too many functionalities that will not
be performed as elegantly. We are overall extremely happy with the outcome of this project. Its
success was made possible in no small part by the support of the Machine Shop staff members at
both Etcheverry Hall and Hesse Hall. They proved to be an extremely valuable resource for both
discussing design ideas as well as manufacturing and obtaining required parts. We would strongly
encourage students to seek support from them as early in their design process as possible.

Appendix A: Complete bill of materials

Part ID Part Name Quantity Cost Link
1 Half-Sized Breadboard 1 $0.00** https://www.adafruit.com/
product/64
2 Adafruit ESP32 1 $0.00%** https://www.adafruit.com/
product/3405
3 Low-Strength Steel 4 $2.88 https://www.mcmaster.co
Threaded Rod m/98790A052/
4 67x67x1/2” Clear 1 $12.20 https://www.mcmaster.co
Polycarbonate m/8574K321/
5 Buna-N O'Ring 3/32” 1 $12.05 https://www.mcmaster.co
m/9452K173/
6 Non-Contact Magnetic 2 $203.34 https://www.mcmaster.co
Shaft Coupling m/9199T2/
7 Stainless Steel Ball 4 $25.68 https://www.mcmaster.co
Bearing m/57155K305/
8 3”x1/4” Stainless Steel 1 $5.75 https://www.mcmaster.co
Rotary Shaft m/1257K 113/
9 9”x1/4” Stainless Steel 1 $10.73 https://www.mcmaster.co

Rotary Shaft

m/1257K118/

10 Precision Flexible $66.31 https://www.mcmaster.com
Shaft Coupling /6208K389/

11 12V Gearmotor $0.00** https://www.pololu.com/pr
with encoder oduct/4758
and 10:1
gearbox

12 127x247x1/4” $30.25 https://www.mcmaster.com
Polycarbonate /8574K43/
Sheet

13 Super Corrosion $16.68 https://www.mcmaster.com
Resistant /90575A174/
Stainless Steel
Threaded Rod

14 3D Printed ABS $0.00** https://jacobsinstitute.berke
Fairing ley.edu/jacobs-self-ser

vice-printing/

15 Clamping Shaft $27.66 https://www.mcmaster.com
Collar /6436K32/

16 Nylon 7.5” $16.99 https://www.amazon.com/
Propeller DEDC-Strength-Prope

ller-Performance-Outb
oard/dp/BO7VXNDY 1

Q/ref=sr_1 1 sspa?cri
d=3UNMKNNBWCK
M6&keywords=model
+boat+propellers&qid

=1697933004&sprefix
=model+boat+propella
15%2Caps%2C130&sr
=8-1-spons&sp_csd=d
21kZ2VOTmFtZT1zcF

9hdGY &psc=1

17 Stainless Steel Hex 60 $8.65 https://www.mcmaster.com
Nut /90257A009/
18 Stainless Steel 8 $12.02 https://www.mcmaster.com
Button Head /98164A663/
Hex Drive
Screw
19 Stainless Steel Ring 8 $8.63 https://www.mcmaster.com
Shim /97022A372/
20 Belleville Disc 4 $3.94 https://www.mcmaster.com
Springs /94065K26/
21 Cytron MD13S 1 $0.00%** https://www.amazon.com/
Motor Driver Cytron-13A-Motor-Dr
iver-MD13S/dp/B07C
W3GRL6
22 11.1V 2200 mAh 1 $0.00** https://www.amazon.com/
LiPo Battery Gens-ace-Battery-220
OmAh-Airplane/dp/B0
OWIN4LGO
23 Stainless Steel 6 $11.00 https://www.mcmaster.com
Socket Head /90751A113/
Screws
24 Washer 100 $4.11 https://www.mcmaster.com
/90107A010/
25 12”x 4” OD Delrin 1 $0.00** https://www.mcmaster.com

stock

/8572K36/

26

Assorted Color
LEDs

$0.00**

https://www.sparkfun.com/
products/12062

27

10 kOhm
Potentiometer

$0.00**

https://www.sparkfun.com/
products/9806

28

Eaton 7.5A Fuze

$4.48

https://www.waytekwire.co
m/product/eaton-s-bus
smann-series-bk-atm-7
-1-2

29

6DOF
Accelerometer

$0.00%*

https://www.sparkfun.com/
products/18020gtVay
WCFBIsRoCOncQAv
D BwE

30

3.7V LiPo Battery

$0.00**

https://www.adafruit.com/p
roduct/3898?gad_sour
ce=1&gclid=CjwKCA
iAIMCrBhAoEiwAC2
d64b x026qezCgeR6i
EDBIXIlyK62VXO0zY
IHPG9y6hOF8yXpY8
nS0zwjRoC600QAvVD
_BwE

** The items marked with two asterisks have been provided by the Etcheverry and Hesse

Hall’s Lab Technicians or Jacobs 3D printing.

Total:

$483.35

Appendix B: CAD images of mechanical transmission elements

Figure 4: CAD - Isometric View of Full Assembly.

e L

i

Figure 5: CAD - Side View of Full Assembly.

\

U/]

=
g
8
E
_i\

%
A
V

e W e

=
— 1

=
777 R
L]

ITEITI

Y

S

e
J/IIIIIII
5

5
IIIIIIIA;
F]

\\\}

\

Figure 6: CAD - Cross-sectional View of Full Assembly.

Figure 7: CAD - Exploded View of Full Assembly.

Figure 8: CAD - Isometric View of Delrin Hull (Watertight Compartment’s Outer Shell).

Figure 9: CAD - Isometric View of Internal Sub-Assembly.

S =

Figure 10: CAD - Cross-sectional View of Internal Sub-Assembly.

10

.:\,‘%“
|
-
L

- “§\\\‘\\'\\\
¢

Figure 12: CAD - Cross-sectional View of External Sub-Assembly.

11

Appendix C: Full listing of code

#include ”CytronMotorDriver.h” // Library for the Cytron motor driver card

#include ”SparkFunLSM6DSO.h” // Library for the LSM6DS0 IMU
#include <Wire.h> // Wire library for I2C communicaition with the IMU
#include <Ticker.h> // Ticker library for mon—blocking countdown timer

// Pin Definitions
#define EIN_A 26 // YELLOW Encoder A pin
#define EIN.B 25 // WHITE Encoder B pin

#define MPIN_1 13 // WHITE Motor Controll pin 1
#define MPIN_2 12 // YELLOW Motor Controll pin 2

#define 12C_SDA 23 // 12C SDA for IMU
#define 12C_SCL 22 // 12C SCL for IMU

// LED Charlieplezing Control Pins
#define L1 15
#define L2 32
#define L3 14

// Potentiometer Pin for Motor Speed Control
#define POT 34 // YELLOW potentiometer

// Constants Definitions
#define GEARRATIO 30 // Gear ratio of the motor
#define COUNTSPERREVOLUTION 16 // Encoder counts per revolution

float ENC.TOROT = 1.0 / (GEARRATIO x COUNTSPERREVOLUTION); // Encoder count to rotation conversion
float CUT.OFF.TEMPERATURE = 30.0; // Temperature threshold in degrees Celsius
float CUT.OFF.GYRO = 300; // Gyro threshold for movement detection

// Sensor and Control Variables
float temperature = 0.0;
float GyroX = 0.0, GyroY = 0.0, GyroZ = 0.0;

int POTMAX = 4095; // Mazimum value for 12—bit ADC
int potValue = 0;
int pwmValue = 0;
int pos = 0; // Non—critical section position

// IMU Setup
LSM6DSO myIMU; // IMU object
int imu_data; // Variable to store IMU data

// Encoder Setup

volatile int position = 0;
volatile int velocity = 0;
volatile int prev_position = 0;
float n_rotations = 0;

float rpm = O0;

bool enableUpdatePosition = true;

CytronMD motor (PWMDIR, MPIN_.1, MPIN_2); // Motor driver object

// State Machine Enums
enum states { STOP, MOVECW, MOVECCW, OVERHEATED };
enum states state = STOP;

enum LEDS { YELLOW, RED1, GREEN, BLUE, WHITE, RED2 };

// Interrupt Management Variables

volatile bool encoderUpdated = false;

hw_timer_t *timerO0 = NULL;

portMUX_TYPE encoderMux = portMUX_INITIALIZER_UNLOCKED ;

Ticker resetPositionTimer; // ticker object for reseting the position

12

// Interrupt Service Routine for Timer

// Every second we update the wvelocity

void IRAM ATTR onTime0 (){
portENTER_CRITICAL_ISR(&encoderMux) ;
velocity = prev_position — position;
prev_position = position;
portEXIT_CRITICAL_ISR(&encoderMux) ;

// Encoder Reading Function
// Works by observing changes to the magnetic field created by a magnet attached to the motor shaft
// If A is high before B, we are moving clockwise
// If B is high before A, we are moving counter—clockwise
// The function is called by an edge—triggered interrupt on A (when A is high), then by checking B
// we can determine the direction
void readEncoder () {
portENTER_CRITICAL_ISR(&encoderMux); // Entering and eziting two times the ISR allows for less time
// spent in them, and ezxecute more complex ISR
encoderUpdated = true;
int b = digitalRead (EIN_B);
port EXIT_CRITICAL_ISR(&encoderMux) ;

if (enableUpdatePosition) {
portENTER_CRITICAL_ISR(&encoderMux) ;
if (b = HIGH) {
position++; // If B is HIGH when A rises, increment position (clockwise rotation)
} else {
position —; // If B is LOW when A rises, decrement position (counterclockwise rotation)

portEXIT_CRITICAL_ISR(&encoderMux) ;

}
}

// Setup Function
void setup (){
Serial .begin(115200);
set _LED (BLUE); // Set LED to blue, indicating that we are booting up correctly

// Initialize Encoder Pins and Interrupt

pinMode (EIN_A, INPUT_PULLUP);

pinMode (EIN_B, INPUT_PULLUP);

attachInterrupt (digitalPinToInterrupt (EIN_A), readEncoder, RISING);

// Timer Setup for Velocity Calculation
// Set the 0th HW timer to count upwards
timer0 = timerBegin (0, 80, true); // Divide by prescaler 80 to get IMHz tick frequency
timerAttachInterrupt (timer0, &onTime0, true); // Attach onTime0 function to timer

timerAlarmWrite (timer0, 1000000, true); // Alarm triggers once every second, resets after being

// triggered
timerAlarmEnable (timer0); // Enable alarm

// Setup for IMU
Wire. begin (I2C_SDA, I12C_SCL);
if (myIMU. begin ()){
Serial . println ("IMU-Ready”);
} else {
Serial.println (”Could-not-connect-to-IMU.”);

if (myIMU.initialize (SOFTINTSETTINGS)) {
Serial . println (”Loaded-Settings.”);
}
}

) Kk Rk Rk ok Rk ok kkx k. Main 00D #k ok kK KA A AAAAAAA KA A A
void loop () {
delay (10); // Preventing rapid state changes

13

if (encoderUpdated = true) {
updateSpeedAndPos ();

}
switch (state) {
case STOP:
if (CheckForCriticalTemperature () = true) { // Event Checker
motor_off (); // Service Function

Serial.println (”Maximum-temperature-exceeded.-Switching-to-state -=-OVERHEATED”);
// Print for debugging

set_LED (RED1); // Service Function
state = OVERHEATED;

if (CheckForEncoderRotationCW () = true) { // Event Checker
motor_on_-CW (); // Service Function
Serial.println ("CW-Manual-start-detected.-Switching-to-state -=-MOVECW”);
// Print for debugging
set_LED (GREEN) ; // Service Function
state = MOVE.CW;

if (CheckForEncoderRotationCCW () == true) { // Event Checker
motor_on-CCW (); // Service Function
Serial.println ("OCW-Manual-start -detected.-Switching-to-state -=-MOVECCW”);
// Print for debugging
set_LED (WHITE) ;
state = MOVECCW;

// Service Function

}
break;
case MOVECW:
if (CheckForCriticalTemperature () = true) { // Event Checker
motor_off (); // Service Function

Serial.println (”Maximum-temperature -exceeded.-Switching-to-state -=-OVERHEATED”);
//Print for debugging

set_LED (RED1); // Service Function
state = OVERHEATED;

}

if (CheckForCriticalGyro () = true) { // Event Checker
motor_off (); // Service Function
Serial . println (”Maximum- gyro -exceeded .- Switching-to-state -=-STOP”); // Print for debugging
set_LED (YELLOW) ; // Service Function
state = STOP;

}

break;

case MOVECCW:

if (CheckForCriticalTemperature () = true) { // Event Checker

motor_off (); // Service Function

Serial.println (”Maximum-temperature - exceeded.-Switching-to-state -=-OVERHEATED”);
//Print for debugging

set_LED (RED1); // Service Function
state = OVERHEATED;

if (CheckForCriticalGyro() = true) { // Event Checker
motor_off (); // Service Function
Serial . println (”Maximum- gyro -exceeded .- Switching-to-state -=-STOP”); // Print for debugging
set_LED (YELLOW) ; // Service Function
state = STOP;

}

break;

case OVERHEATED:

if (CheckForCriticalTemperature () = false) { // Event Checker
Serial.println (” Temperature-back-to-normal.-Switching-to-state-=-STOP”); //Print for debugging
set_LED (YELLOW) ; // Service Function

reset_position ();
// (since we didn’t turn motor off here as it is already off, we meed to exzplicitly reset the
// position of the encoder)

14

state = STOP;
}
break;
}
}

/) kg kkxxxxxxxxxx Bvent Checkers (FuUNCUTTONS) %%k ks kskoskosdosk sk o ok ok ok ok ok ok kK K
bool CheckForEncoderRotationCW () { // Check for clockwise rotation

return position < —70;
}

bool CheckForEncoderRotationCCW () { // Check for clockwise rotation
return position > 70;
}

bool CheckForCriticalTemperature () {
temperature = myIMU.readTempC ();
return temperature >= CUT.OFF.TEMPERATURE;

}

bool CheckForCriticalGyro () {
GyroX = myIMU. readFloatGyroX ();
GyroY = myIMU.readFloatGyroY ();
GyroZ = myIMU.readFloatGyroZ ();
return (abs(GyroX) >= CUT.OFF.GYRO) || (abs(GyroY) >= CUT.-OFF.GYRO) || (abs(GyroZ) >= CUT.OFF_GYRO);
}

[/ kEEE kA A A KRRk xRk Ak SETVICE FUNCETONS koot o ok o oo ok ko o ook KA K KKK
void motor_on.CW () {

potValue = analogRead (POT);

pwmValue = map(potValue, 0, POTMAX, 50, 128);

motor.setSpeed (pwmValue);

Serial.print (?”Motor-ON- (CW). - Desired - Motor -PWM: -7) ;

Serial.println (pwmValue);

}

void motor.on.CCW () {
potValue = analogRead (POT);
pwmValue = map(potValue, 0, POTMAX, 50, 128);
motor . setSpeed(—pwmValue);
Serial.print (”Motor-ON- (OCW). - Desired - Motor PWM: -7) ;
Serial.println(—pwmValue);

}

void motor_off () {
motor.setSpeed (0);
position = 0;
enableUpdatePosition = false;
resetPositionTimer .once (1, reset_position); // calls the reset position function after 1 sec
Serial.println (”Motor -OFF”);

}

void reset_position () {

position = 0;

prev_position = 0;

velocity = 0;

rpm = 0;
enableUpdatePosition = true;

//resetPositionTimer. detach ();

// Update rpm, pos and rotation count
void updateSpeedAndPos () {

int localPosition;

int localVelocity;

portENTER_CRITICAL(&encoderMux) ;

15

encoderUpdated = false;
localPosition = position;
localVelocity = velocity;
portEXIT_CRITICAL(&encoderMux) ;

pos = localPosition;
n_rotations = pos * ENC.TOROT,;
rpm = localVelocity * ENC.TOROT % 60;

/) wEEkEk kA kxx kA kkxxxkxkx Functions for LEDs (control charliepleTinmg) sk ks sk sk d ks ok ok ok ok ok ok %k K
// Implementing charlieplezing, a technique west to control multiple LEDs with fewer I/O pins
// ezxzploiting the tristate capabilities of the microcontroller, this means that pins can be both
// on off and ”disconnected”

// Set LED pin to high (sourcing current)
void set_H (int pin) {

pinMode (pin , OUTPUT);

digitalWrite (pin, HIGH);
}

// Set LED pin to low (sinking current)
void set_L (int pin) {

pinMode (pin , OUTPUT);

digitalWrite (pin, LOW);
}

// Set LED pin to Z (high—impedans)
void set_Z (int pin) {
pinMode (pin, INPUT); // Put pin in high—impedans state, mneither souces mor sinks current
digitalWrite (pin, LIOW); // Enable internal pull—down resistor, ensure pin pulled to low wvoltage
}

void set_.LED (LEDS color) {
switch (color)
{
case YELLOW:
set_L(L1); set_.H(L2); set_-Z(L3);
break;

case REDL1:
set _H(L1); set_L(L2); set-Z(L3);
break;

case GREEN:
set-Z (L1); set_-L(L2); set-H(L3);
break;

case BLUE:
set_-Z (L1); set-H(L2); set_-L(L3);
break;

case WHITE:
set_L(L1); set_-Z(L2); set_-H(L3);
break;

case RED2:
set_.H(L1); set_-Z(L2); set_L(L3);
break;

16

