
Automated Blackjack Dealer
ME102b Group 3

Yiheng Ji, Matthew Thomas, Hyeong Yoon, Lori Huang

I. Opportunity the Dealer Addresses
Our device partially automates a blackjack game by performing the role of the dealer.

The device aims to reduce human errors while unburdening the labor of the dealer during the
game.
II. High-level strategy

We wanted our automated blackjack dealer to perform 3 tasks: shoot individual cards to
different players, read the values of the cards that it shoots, and sense whether a player decides
to “hit” or “stand”. To implement card dealing/shooting, we needed to build a machine capable of
ejecting cards and rotating in order to shoot cards in different directions.

To read the cards, we planned to use a camera and an Optical Character Recognition
model to read the values of each card. Reading the values of each card would allow us to
determine whether a player’s hand had busted or not. To sense a “hit” or a “stand”, we used two
buttons - one which represented a “hit”, and the other which represented a “stand”.

Ideally, our device would be able to read and eject cards about once every second. The
device should also be able to eject cards at least 3 feet in order to reach the players.

III. Photo of Fully Assembled Device

Figure1: Card Dealer Machine with a Camera

IV. Function Critical Decisions
DC Motor Speed
After the cards shoot out, they follow the physics laws as listed below:

Assume the goal is to shoot one card for about 20 cm on the table. The required initial speed of
the card can be calculated by plugging the equations above:

Thus, a DC motor with 400 rpm is sufficient:

Card Exiting Angle and Force
To offset part of the friction between cards so that only one card is shot out each time, a slop of
10 degrees is attached at the exit of the card holder. Thus, the force and acceleration holding
the second card still in the box can be calculated as:

Stepper motor shaft loads and Gear Calculations
The size of the ring gear was chosen based on the size of our base, we selected this pitch
diameter to be 110 mm. Our pinion gear needs to be roughly less than half the radius of our ring
gear, so a pitch diameter of 40 mm was selected. Due to the constraints we have on
manufacturing (laser plywood and 3d printing in PLA), we opted for a module of 2, with the
pinion having 20 teeth and ring gear with 55, with the resulting gear ratio 2.75.

Our base needs to revolve around 1 revolution/sec to meet our dealing specs, using our gear
ratio, the necessary stepper rpm is calculated:

From our motor specs, the corresponding torque output for this speed is 0.24 N m.

The resultant torque on our stepper motor shaft is within the motor torque limit:

V. Circuit and State Transition Diagrams

Figure2: Circuit Diagram

Figure3: State Transition Diagram

VI. Reflections for Future Students of 102B
Starting early is the best thing you can do. Often, subsystems that you think will be trivial to
make turn out to be a lot more tedious than expected. Instead of developing and building
everything at once, make your progress modular so a team can isolate each issue from another.
For example, we had our own test logic for shooting, rotating, and reading.

VII. Appendices

CAD

Full Isometric Assembly

DC Motor and wheel Assembly

Stepper and revolving base subassembly

Shaft transmission crossection view

Ring Gear Top View

BOM
Component Quantity Price per Total Vendor Link

Hardware

1/4" Rotary Shaft 1 4.8 4.8 McMaster
https://www.mcmaster.com/catalog/12
9/1339/1327K113

M3 SHS screws +
washers + nuts (assorted) 1 18.99 18.99 Amazon

https://www.amazon.com/VIGRUE-610
PCS-Socket-Machine-Assortment/dp/B
09NR8X2LV/ref=sr_1_10?crid=3C5X7L
AYNZKNT&keywords=m3%2Bscrews%
2Bsocket%2Bhead&qid=1698012121&
sprefix=m3%2Bscrews%2Bsocle%2Ca
ps%2C144&sr=8-10&th=1

Gearmotor Bracket Pair 1 2.95 2.95 Pololu https://www.pololu.com/product/989

Pololu Wheel 40 * 7 mm
Pair 1 4.95 4.95 Pololu https://www.pololu.com/product/1452

1/4" Ligth Duty Sleeve
Bearing (flange) 2 0.69 1.38 McMaster

https://www.mcmaster.com/catalog/12
9/1413/6389K231

1/4" Shaft Collars 3 6.19 18.57 McMaster https://www.mcmaster.com/catalog/12

https://www.mcmaster.com/catalog/129/1339/1327K113
https://www.mcmaster.com/catalog/129/1339/1327K113
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.amazon.com/VIGRUE-610PCS-Socket-Machine-Assortment/dp/B09NR8X2LV/ref=sr_1_10?crid=3C5X7LAYNZKNT&keywords=m3%2Bscrews%2Bsocket%2Bhead&qid=1698012121&sprefix=m3%2Bscrews%2Bsocle%2Caps%2C144&sr=8-10&th=1
https://www.pololu.com/product/989
https://www.pololu.com/product/1452
https://www.mcmaster.com/catalog/129/1413/6389K231
https://www.mcmaster.com/catalog/129/1413/6389K231
https://www.mcmaster.com/catalog/129/1436/6436K12

9/1436/6436K12

¼” Flat Washer 4 0.33 1.32
Ace
Hardware

Material

PLA 250 g 5 5 Jacobs Hall

1/8" Plywood
18" x
15" 4.16 4.16 Jacobs Hall

Electronics

Micro Metal Gear Motor
(75:1) 1 19.95 19.95 Pololu

https://www.pololu.com/product/2366/s
pecs

Nema 17 Stepper Motor 1 14 14 Jacobs Hall

Raspberry Pi 1 63.61 63.61 Amazon

https://www.amazon.com/Raspberry-M
odel-2019-Quad-Bluetooth/dp/B07TC2
BK1X/ref=sr_1_3?keywords=raspberry
+pi&qid=1698033296&sr=8-3&ufe=app
_do%3Aamzn1.fos.006c50ae-5d4c-477
7-9bc0-4513d670b6bc

Pi Cam 1 9.99 9.99 Amazon

https://www.amazon.com/Arducam-Me
gapixels-Sensor-OV5647-Raspberry/dp
/B012V1HEP4/ref=sr_1_4?keywords=R
aspberry+Pi+Camera+Module&qid=169
8033326&sr=8-4

A4988 Stepper Motor
Driver 1 5.89 5.89 Amazon

https://www.amazon.com/HiLetgo-Step
stick-Stepper-Printer-Compatible/dp/B0
0LOF1CA2?source=ps-sl-shoppingads-
lpcontext&ref_=fplfs&psc=1&smid=A30
QSGOJR8LMXA

DRV8835 1 4.95 4.95 Pololu
https://www.pololu.com/product/2135

Total: 148.4

https://www.mcmaster.com/catalog/129/1436/6436K12
https://www.pololu.com/product/2366/specs
https://www.pololu.com/product/2366/specs
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Raspberry-Model-2019-Quad-Bluetooth/dp/B07TC2BK1X/ref=sr_1_3?keywords=raspberry+pi&qid=1698033296&sr=8-3&ufe=app_do%3Aamzn1.fos.006c50ae-5d4c-4777-9bc0-4513d670b6bc
https://www.amazon.com/Arducam-Megapixels-Sensor-OV5647-Raspberry/dp/B012V1HEP4/ref=sr_1_4?keywords=Raspberry+Pi+Camera+Module&qid=1698033326&sr=8-4
https://www.amazon.com/Arducam-Megapixels-Sensor-OV5647-Raspberry/dp/B012V1HEP4/ref=sr_1_4?keywords=Raspberry+Pi+Camera+Module&qid=1698033326&sr=8-4
https://www.amazon.com/Arducam-Megapixels-Sensor-OV5647-Raspberry/dp/B012V1HEP4/ref=sr_1_4?keywords=Raspberry+Pi+Camera+Module&qid=1698033326&sr=8-4
https://www.amazon.com/Arducam-Megapixels-Sensor-OV5647-Raspberry/dp/B012V1HEP4/ref=sr_1_4?keywords=Raspberry+Pi+Camera+Module&qid=1698033326&sr=8-4
https://www.amazon.com/Arducam-Megapixels-Sensor-OV5647-Raspberry/dp/B012V1HEP4/ref=sr_1_4?keywords=Raspberry+Pi+Camera+Module&qid=1698033326&sr=8-4
https://www.amazon.com/HiLetgo-Stepstick-Stepper-Printer-Compatible/dp/B00LOF1CA2?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A30QSGOJR8LMXA
https://www.amazon.com/HiLetgo-Stepstick-Stepper-Printer-Compatible/dp/B00LOF1CA2?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A30QSGOJR8LMXA
https://www.amazon.com/HiLetgo-Stepstick-Stepper-Printer-Compatible/dp/B00LOF1CA2?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A30QSGOJR8LMXA
https://www.amazon.com/HiLetgo-Stepstick-Stepper-Printer-Compatible/dp/B00LOF1CA2?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A30QSGOJR8LMXA
https://www.amazon.com/HiLetgo-Stepstick-Stepper-Printer-Compatible/dp/B00LOF1CA2?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A30QSGOJR8LMXA
https://www.pololu.com/product/2135

Description for figure 2 and 3

In Figure 2, The card dealer machine uses a Raspberry Pi to process the inputs and manage
the outputs. The two push button modules with 3 pins are used for analog inputs, which are
binary signals. A camera that reads the cards is used to take digital input. On the output side,
the 5V DC Motor is driven by driver DRV8833 and the 12V step motor NEMA 17 is driven by
A4988.

In Figure 3, the machine will initiate by inquiring about the number of players participating in the
game(state 1). This input will determine the player's position and initialize parameters, including
angles and data structures to keep track of card distribution for each player and the dealer.
Once the initial dealing is complete, the machine will rotate to the first player (i=0) and await
their input—either a "hit" or "stand" command(state 2). In the event of a "stand," the machine
will rotate to the next player. Conversely, if the player chooses to "hit," the machine will read and
distribute a card to the player, repeating this process until the player either busts or chooses to
stand(state 3). Once all players have completed their turns, the machine will rotate to the
dealer's position. The dealer will then deal cards while the sum of the dealer's cards is under
17(state 4). Subsequently, the machine will determine the winners based on the dealt cards,
signaling the end of the game(state 5).

Logic Flow Chart:

import time
import RPi.GPIO as GPIO

SOME OF THE LOWER GPIO PINS ARE PULLED UP BY DEFAULT (use a higher pin)
hitButton = 6
standButton = 5

def init_buttons():
 GPIO.setup(hitButton, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
 GPIO.setup(standButton, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

""" Returns true if hit, false if stand """
def poll_button():
 # while GPIO.input(hitButton) == 0 and GPIO.input(standButton):
 # time.sleep(1)
 hit = 0
 stand = 0

 while True:
 hit = GPIO.input(hitButton)
 stand = GPIO.input(standButton)
 if hit:
 print("Hit!")
 time.sleep(1)
 hit = 0
 stand = 0
 return True

 if stand:
 print("Stand!")
 hit = 0
 stand = 0

 time.sleep(1)
 return False

import cv2
import numpy as np
import pytesseract
import time

NUM_SHOTS = 10 #number of images that we get

""" Returns a video capture object """

fail = False

def init_detection():
 # Initialize the webcam
 cap = cv2.VideoCapture(0)

 if not cap.isOpened():
 print("Error opening video")
 exit(-1)

 ret, frame = cap.read()
 height, width, _ = frame.shape
 cv2.namedWindow('Raw Image', cv2.WINDOW_NORMAL)
 cv2.resizeWindow('Raw Image', width, height)

 return cap

""" Returns the card number. Returns [] if unsuccesful """
def detect_card(cap):

 card_images = []
 count = 0
 fail_count = 0

 # for _ in range(NUM_SHOTS):
 while count < 7 and fail_count < 10:
 ret, frame = cap.read()

 if not ret:
 break

 # Format the raw image
 flipped_frame = cv2.flip(frame, -1)

 x,y,h,w = 0,50,240,320
 # frame = flipped_frame[180:350, 240:340] #height and width
 frame = flipped_frame[180:340, 250:360] #height and width

 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 frame = cv2.GaussianBlur(frame, (5,5), 0)

 # _, frame = cv2.threshold(frame, 30, 200, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)
 _, frame = cv2.threshold(frame, 30, 255, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)

 # Show the formatted image
 cv2.imshow('Raw Image', frame)

 # Find the card number
 pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' # Replace with
the actual path from 'which tesseract'
 custom_config = r'--oem 3 --psm 7 -c tessedit_char_whitelist=2345678910AJQK'
 text = pytesseract.image_to_string(frame, config=custom_config)

 # print("type is", type(text))
 # print("length of the string is ", len(text))

 # card_images.append(text)
 if text.strip():
 single_char = text.strip()[0]
 card_images.append(single_char)
 count = count + 1
 else:
 print("Failed to detect")
 print(fail_count)
 # time.sleep(0.5)
 fail_count = fail_count + 1
 # single_char = '*'
 # card_images.append(single_char)

 # DEBUGGING
 # print(f"card detected: {text}")

 # Check for the 'q' key to quit the program
 if cv2.waitKey(1) & 0xFF == ord('q'):
 return '*'

 if fail_count >= 10:
 card = input("Enter card: ")
 card = card.upper()
 card = card[0]
 return card

 # Return the
 ret_val = max(card_images,key=card_images.count)
 if len(ret_val) > 1:
 print('There was a tie in reading card')

 print(ret_val)
 ret_val = ret_val[0]

 # print('sanity check inside detection logic')
 print("camera read ", ret_val)
 # if ret_val.strip():
 # # try:
 # # single_char = text.strip()[0]
 # # print("Detected:", single_char)
 # # except Exception:
 # # print("something wrong")
 # return ""

 # else:
 # print("No text detected")

 # print("inside the detectio function")
 # print(type(ret_val))
 # # DEBUGGING
 # print(f"ret_val: {ret_val[0], ret_val[1], ret_val[2]}")
 # print("reading", ret_val)

 return ret_val

def close_detection(cap):
 # Release the capture object and close the OpenCV window
 cap.release()
 cv2.destroyAllWindows()

#ret, frame = cap.read()
 # if ret:
 # height, width, _ = frame.shape
 # cv2.namedWindow('Raw Image', cv2.WINDOW_NORMAL)
 # cv2.resizeWindow('Raw Image', width, height)
 # print("width ", width)
 # print("height ", height)

import RPi.GPIO as GPIO
import time

DIR = 22
STEP = 23
steps_per_rev = 200

GPIO.setmode(GPIO.BCM)

def init_rotate():
 GPIO.setup(DIR, GPIO.OUT)
 GPIO.setup(STEP, GPIO.OUT)

def spin_clockwise(steps):
 print("Spinning Clockwise...")
 GPIO.output(DIR, GPIO.HIGH)

 for _ in range(steps):
 GPIO.output(STEP, GPIO.HIGH)
 time.sleep(0.001)
 #time.sleep(0.003)
 GPIO.output(STEP, GPIO.LOW)
 time.sleep(0.001)
 #time.sleep(0.003)

 time.sleep(1)

def spin_anticlockwise(steps):
 print("Spinning Anti-Clockwise...")
 GPIO.output(DIR, GPIO.LOW)

 for _ in range(steps):
 GPIO.output(STEP, GPIO.HIGH)
 time.sleep(0.001)
 #time.sleep(0.003)
 GPIO.output(STEP, GPIO.LOW)
 time.sleep(0.001)
 #time.sleep(0.003)

 time.sleep(1)

import RPi.GPIO as GPIO
import time

def init_shoot():
 global CHANNEL_1
 global CHANNEL_2
 global pwm1
 global pwm2

 # GPIO.setmode(GPIO.BCM)

 CHANNEL_1 = 17
 CHANNEL_2 = 18

 #Set up GPIO
 GPIO.setup(CHANNEL_1, GPIO.OUT)
 GPIO.setup(CHANNEL_2, GPIO.OUT)
 pwm1 = GPIO.PWM(CHANNEL_1, 5000)
 pwm2 = GPIO.PWM(CHANNEL_2, 5000)

def drive_forward():
 GPIO.output(CHANNEL_1, GPIO.HIGH)
 GPIO.output(CHANNEL_2, GPIO.LOW)
 # pwm1.start(80)

def drive_backward():
 GPIO.output(CHANNEL_1, GPIO.LOW)
 GPIO.output(CHANNEL_2, GPIO.HIGH)
 #pwm2.start(80)

def stop_motor():
 GPIO.output(CHANNEL_1, GPIO.LOW)
 GPIO.output(CHANNEL_2, GPIO.LOW)

def shoot():
 drive_forward()
 time.sleep(0.220)
 stop_motor()
 pwm1.stop()

 drive_backward()
 time.sleep(0.5)
 stop_motor()
 pwm2.stop()

import RPi.GPIO as GPIO
import shoot_logic as sl
import detection_logic as dl
import rotate_logic as rl
import button_logic as bl
import time
import sys

STEP_SIZE = 100

card_vals ={}
card_vals['2'] = 2
card_vals['3'] = 3
card_vals['4'] = 4
card_vals['5'] = 5
card_vals['6'] = 6
card_vals['7'] = 7
card_vals['8'] = 8
card_vals['9'] = 9
card_vals['0'] = 10
card_vals['10'] = 10
card_vals['1'] = 10
card_vals['J'] = 10
card_vals['Q'] = 10
card_vals['K'] = 10
card_vals['A'] = 1

def add_cards(idx):
 sum = 0

 for i in range(len(CARDS[idx])):
 key = CARDS[idx][i]
 val = card_vals[key]
 sum = sum + val

 return sum

SETUP = 1
CHOOSE_NUM_PLAYERS = 2
DEAL = 3
GAME = 4
EXIT = 5

state = SETUP

match state:
 case 1:
 """ SETUP """
 GPIO.setmode(GPIO.BCM)

 # Initialize card detection
 # CAP = dl.init_detection()
 # dl.detect_card(CAP)

 # Initialize card shooting
 # Pins 17 and 18 used for shooting cards
 sl.init_shoot()

 # Pins 5 and 6 are used for buttons
 bl.init_buttons()

 # Pin 22 and 23 used for rotating the base
 rl.init_rotate()

 state = CHOOSE_NUM_PLAYERS

 case 2:
 """ CHOOSE NUM PLAYERS """
 num = input("Number of players: ")
 NUM_PLAYERS = int(num)
 while NUM_PLAYERS < 1 and NUM_PLAYERS > 5:
 if NUM_PLAYERS < 1:
 print("Too few players")
 elif NUM_PLAYERS > 5:
 print("Too many players")

 num = input("Number of players: ")
 NUM_PLAYERS = int(num)

 # dl.close_detection()
 SCORES = [] # Keeps track of the scores of each player; player 0 is
the dealer

 state = DEAL

 case 3:
 """ DEAL CARDS """
 CARDS = [] # index i is the cards that player i has

 # 'player 0' is the dealer

 # it will return empty list []
 # it will return an element
 CAP = dl.init_detection()
 card = dl.detect_card(CAP)

 dl.close_detection(CAP)
 print(card)
 cards = [card]

 CARDS.append(cards)
 SCORES.append(add_cards(0))
 sl.shoot()

 # Deal to the players
 for i in range(NUM_PLAYERS):

 player_cards = []

 # rotate to player i
 rl.spin_clockwise(STEP_SIZE)

 # Deal two cards
 for _ in range(2):
 CAP = dl.init_detection()
 # throw away - gives camera enough time to recognize
the next card
 # for _ in range(1): #change as necessary
 # dl.detect_card(CAP)

 # detecting the card
 card = dl.detect_card(CAP)

 player_cards.append(card)

 sl.shoot()
 dl.close_detection(CAP)
 time.sleep(1)

 # all the cards ex) [2,3] will be added to CARDS
 CARDS.append(player_cards)
 SCORES.append(add_cards(i))

 # Rotate back
 for i in range(NUM_PLAYERS):
 # rotate to player i
 rl.spin_anticlockwise(STEP_SIZE)

 # DEBUGGING
 print(f"dealer card: {CARDS[0][0]}")
 for i in range(1, NUM_PLAYERS + 1):
 print(f"player {i} cards: {CARDS[i][0], CARDS[i][1]}")

 print(f"Scores: {SCORES}")

 state = GAME

 case 4:
 """ GAME """
 # for players
 for i in range(1, NUM_PLAYERS + 1):
 # rotate to player i
 rl.spin_clockwise(STEP_SIZE)
 done = False
 player_cards = CARDS[i]

 while not done:
 print("hit?")
 has_hit = bl.poll_button()

 if has_hit:
 # throw away - gives camera enough time to
recognize the next card
 # for _ in range(1): #change as necessary
 # dl.detect_card(CAP)
 CAP = dl.init_detection()
 next_card = dl.detect_card(CAP)
 # # detecting the card
 # next_card = '*'
 # while next_card == '*':
 # next_card = dl.detect_card(CAP)
 # print(next_card)

 player_cards.append(next_card)
 print("player's cards: ", player_cards)

 sl.shoot()
 dl.close_detection(CAP)
 if add_cards(i) > 21:
 done = True
 print("Bust!")
 else:
 done = True

 SCORES[i] = add_cards(i)

 # Rotate back
 for i in range(NUM_PLAYERS):
 # rotate to player i
 rl.spin_anticlockwise(STEP_SIZE)

 done = False
 player_cards = CARDS[0]

 while not done:

 # throw away - gives camera enough time to recognize the
next card
 # for _ in range(1): #change as necessary
 # dl.detect_card(CAP)
 CAP = dl.init_detection()
 # detecting the card
 # next_card = '*'
 # while next_card == '*':
 # next_card = dl.detect_card(CAP)
 # print(next_card)

 next_card = dl.detect_card(CAP)

 player_cards.append(next_card)
 print("dealer's cards: ", player_cards)

 sl.shoot()
 dl.close_detection(CAP)

 if add_cards(0) >= 17:
 done = True
 print("Dealer's card is over 17. Stop the game!")

 SCORES[0] = add_cards(0)

 state = EXIT

 case 5:
 """ EXIT """
 winners = []
 ties = []
 losers = []
 dealer_score = SCORES[0]
 result = {}

 for i in range(1, len(SCORES)):
 score = SCORES[i]
 if score > 21:
 losers.append(i)
 result[i] = 'Lost'
 elif score <= 21 and dealer_score <= 21 and score <
dealer_score:
 losers.append(i)
 result[i] = 'Lost'
 elif dealer_score > 21 and score <= 21:
 winners.append(i)
 result[i] = 'Won'
 elif dealer_score <= 21 and score > dealer_score and score
<= 21:
 winners.append(i)

 result[i] = 'Won'
 elif score == dealer_score :
 ties.append(i)
 result[i] = 'Draw'

 print("Dealer cards")
 print(CARDS[0])
 print("Player cards")
 print(CARDS[1:len(SCORES)])
 print(SCORES)
 for i in range(1, len(SCORES)):
 print(f"Player {i} {result[i]}")

 #dl.close_detection()
 sys.exit()

