
Remote Controlled Maze
Daniel Richards, Laura Wong, Kyle Woody

ME 102B Fall 2024

Opportunity
Our goal was to create an interactive activity that is enjoyable for all ages and promotes improved

basic cognitive and fine motor control skills. This took the form of a rotating marble maze—a device that
holds a course perpendicular to the ground and rotates it based on user input so that a marble within it can
fall through. The primary utility of the device is as a form of entertainment, although it may also be useful
as a physical therapy tool, as an exercise in hand-eye coordination and fine motor skills.

Strategy and Functionality
Our original high-level design was a maze with 2 degrees of rotational freedom that was parallel

to the ground in its neutral position. Using a set of two motors and concentric gimbals, the maze would
pitch and roll to move a marble through it. The desired user input was an IMU, with the maze movement
corresponding with the rotation of the IMU when a button was held down. A potentiometer would be
included to adjust the sensitivity of the controller, along with a button to reset the maze to its neutral
position. These user input elements would be mounted separate from the microcontroller and motor
electronics on a handheld board. To limit the actuation of the gimbals to within a tilt angle of ±15 degrees
and enable feedback control of motor speed, magnetic encoders would be placed on the motors.

After considering several mechanisms and layouts for the maze, we eventually realized that it
would be simpler and more cost-effective to eliminate one degree of freedom and mount the maze in a
vertical position, rotating it about a single axis. Marbles would be dropped in from a hole at the top and
would be guided to the opposite side of the maze. This approach would have much simpler transmission
and control, allowing us to focus more on the mechanical design and user experience.

The final design uses the same user input as envisioned for the original maze, albeit with only one
accelerometer axis being observed. An encoder is still used on the maze for position and velocity control,
but the actuation did not need to be limited since the maze could rotate a full 360 degrees as opposed to
the original design. Whereas the previous design had no motor velocity limit, the encoder was used to
enforce a maximum angular velocity of 72 deg/s on the final design. The potentiometer was removed
from the design because it was not necessary and would have resulted in a cluttered controller. To keep
the center of gravity low and reduce the size and complexity of the enclosure, the motor is kept close to
the bottom of the assembly and uses a simple geared transmission system to actuate the maze above.
Lastly, position control was added to the final design, using the magnetic encoder and
proportional-integral feedback to return the maze back to its upright position. This was necessary to
conveniently drop in new marbles.

Function Critical Decisions & Calculations

REQUIRED MOTOR TORQUE: The most critical consideration was sourcing a motor that could safely
operate at a top speed of 72 degrees per second — one full revolution of the maze in five seconds — and
would be able to reach this speed from a standstill within 0.01 seconds. Since the user will likely be
starting and stopping the maze regularly during operation, the motor will approach maximum torque
frequently.

ω = 72 𝑑𝑒𝑔/𝑠 = 1. 26 𝑟𝑎𝑑/𝑠 = α𝑡 = 0. 01α α = 126 𝑟𝑎𝑑/𝑠2

τ = 𝐼α = 1
2 𝑚𝑟2 * 𝑎 = 0. 5 * 0. 0785𝑘𝑔 * (0. 0762𝑚)2 * 126 𝑟𝑎𝑑/𝑠2 = 2. 87 𝑁·𝑐𝑚

τ
𝑚𝑜𝑡𝑜𝑟

= τ
0.6 = 4. 78 𝑁·𝑐𝑚 = 0. 487 𝑘𝑔·𝑐𝑚

Assuming that the operational torque limit is 60% of the stall torque, the motor must have a stall torque
rating of at least 0.487 kg·cm. The final selected motor has a stall torque rating of 4.7 kg·cm.

FORCES ON BEARINGS: Bearings were not considered a point of failure since they are made of steel.
However, the bearing loads are necessary to determine so that the housing can be optimally designed. The
bearing loads are calculated below and used as an input for the generative design of the housing in
Autodesk Fusion.
Bearings A & B
𝑊

15𝑇
= ((0. 212𝑜𝑧)(20%) + 3. 2𝑔 + 4𝑔)(9. 81) = 0. 082𝑁

Σ𝐹
𝑦

= 0 = 𝐴
𝑦

+ 𝐵
𝑦

− 𝐹
15𝑇/21𝑇,𝑦

− 𝑊
15𝑇

Σ𝑀
𝐴

= 0 = 𝑀
𝐹

15𝑇/21𝑇,𝑦

+ 𝑀
𝑏

+ 𝑀
𝑊15𝑇

𝐴
𝑦

= 𝐹
15𝑇/21𝑇,𝑦

− 𝐵
𝑦

= 0. 24𝑁

Bearings C & D
𝑊

21𝑇
= ((8. 159𝑔)(20%) + 3. 2𝑔 + 4𝑔)(9. 81) = 0. 087𝑁

Σ𝐹
𝑦

= 0 = 𝐶
𝑦

+ 𝐷
𝑦

+ 𝐹
15𝑇/21𝑇,𝑦

− 𝐹
21𝑇/15𝑇,𝑦

− 𝑊
21𝑇

Σ𝑀
𝐶

= 0 = 𝑀
𝐷

+ 𝑀
𝐹

21𝑇/15𝑇,𝑦

+ 𝑀
𝐹

15𝑇/21𝑇,𝑦

+ 𝑀
𝑊21𝑇

𝐶
𝑦

= 𝐹
21𝑇/15𝑇,𝑦

+ 𝑊
21𝑇

− 𝐷
𝑦

− 𝐹
15𝑇/21𝑇,𝑦

= 0. 029𝑁

Bearings E & F
𝑊

𝑚𝑎𝑧𝑒
= 0. 77𝑁

Σ𝐹
𝑦

= 0 = 𝐸
𝑦

+ 𝐺
𝑦

+ 𝐹
21𝑇/15𝑇,𝑦

− 𝑊
15𝑇

− 𝑊
𝑚𝑎𝑧𝑒

→ 𝐺
𝑦

= 0. 021
𝐸

𝑦
= 𝑊

15𝑇
− 𝐺

𝑦
− 𝐹

21𝑇/15𝑇,𝑦
=− 0. 51𝑁

Diagrams

(Left) Circuit Diagram. (Right) State Transition Diagram.

Integrated Assembly

Reflection
The project went smoothly and we encountered no major obstacles. The main area where we

strove for a simple design was in the transmission, where we reduced the degrees of freedom of the
maze’s motion with the aim of focusing our resources onto a single well-designed, robust mechanism.
However, some parts of the maze’s structural housing were probably overdesigned. These parts were
made using a Markforged printer with carbon reinforcements, and resulted in unnecessary cost and
manufacturing lead time.

Desired improvements to this design include the addition of a limit switch to allow the maze to
zero its position by itself, addition of spacers on the threaded screws connecting the two sides of the
transmission housing to prevent over-torquing, and further tweaking of the control algorithm to improve
the response at low user inputs. In addition, assembly of the housing was difficult in some areas, and the
use of nuts on a threaded rod as the sole locating feature for some components was especially
troublesome. It would be better for the maze’s base to have tabs that act as locating features for the motor
and transmission housings. Lastly, fasteners significantly loosened after extended operation, causing the
transmission system to slip. In future designs, the use of secondary fastener retention is paramount, as
well as machining flats onto the shafts to reduce the amount of preload needed to clamp the gears and
minimize wear.

Appendix 1: BOM

Item Name Description Price (ea.) Qty. Vendor Link to Item Notes Subtotal

Onyx filament
Markforged
filament (priced
per cm^3)

$ 0.27 122 Jacobs Hall
https://store.jacobshall.org/products/markfo
rged-onyx-filament-per-cubic-inch?_pos=1
&_sid=f22dbf23a&_ss=r

Planned usage
based on 20%
infill

$ 32.94

1/16" acrylic
12" x 12" acrylic
sheet

$ 5.14 1 McMaster https://www.mcmaster.com/8589K11/ $ 5.14

4mm shaft
4mm dia x 200
mm length steel
shaft

$ 5.25 1 McMaster https://www.mcmaster.com/1327K507/

Will be cut
into the
lengths needed
for our design

$ 5.25

7/64" Ball
Bearing Ball

Steel
wear-resistant ball,
7/64" dia (pkg of
100)

$ 7.99 1 McMaster https://www.mcmaster.com/9529K35/
One needed in
total

$ 7.99

25d metal
gearmotor

12V motor with
encoder and 4mm
shaft

$ 45.95 1 Pololu https://www.pololu.com/product/4868 $ 45.95

Pololu
Universal
4mm shaft
mount

Mounting hub for
4mm shafts,
compatible with
M3 screws

$ 8.49 2 Pololu https://www.pololu.com/product/1997 2 Pack $ 16.98

Stainless Steel
ring shim

4mm ID, 8mm OD
(pkg of 10)

$ 11.82 1 McMaster https://www.mcmaster.com/90214A151/
Four needed in
total

$ 11.82

https://store.jacobshall.org/products/markforged-onyx-filament-per-cubic-inch?_pos=1&_sid=f22dbf23a&_ss=r
https://store.jacobshall.org/products/markforged-onyx-filament-per-cubic-inch?_pos=1&_sid=f22dbf23a&_ss=r
https://store.jacobshall.org/products/markforged-onyx-filament-per-cubic-inch?_pos=1&_sid=f22dbf23a&_ss=r
https://www.mcmaster.com/8589K11/
https://www.mcmaster.com/1327K507/
https://www.mcmaster.com/9529K35/
https://www.pololu.com/product/4868
https://www.pololu.com/product/1997
https://www.mcmaster.com/90214A151/

Flexible Shaft
Connector

4mm-to-4mm
aluminum shaft
connector

$ 7.99 1 Amazon
https://www.amazon.com/uxcell-Aluminum
-Coupling-Flexible-Connector/dp/B07G6Q
BR8Y?th=1

$ 7.99

M3 Screw
12 mm lg, alloy
steel (pkg of 100)

$ 11.29 1 McMaster https://www.mcmaster.com/91290A117/
12 needed in
total

$ 11.29

M3 Screw
(short)

6 mm lg,
zinc-coated steel
(pkg of 50)

$ 6.45 1 McMaster https://www.mcmaster.com/91274A102/
Two needed in
total

$ 6.45

M4 Nut
Zinc-plated hex
nut (pkg of 50)

$ 7.14 1 McMaster https://www.mcmaster.com/90725A025/
Nine needed in
total

$ 7.14

M4 Hex Head
Screw

30mm lg stainless
steel (pkg of 25)

$ 7.86 1 McMaster https://www.mcmaster.com/92855A425/
Three needed
in total

$ 7.86

M4 Philips
Head Screw

70 mm lg
zinc-plated steel
(pkg of 10)

$ 4.69 1 McMaster https://www.mcmaster.com/92005A248/
Three needed
in total

$ 4.69

Ball Bearing
Flanged, shielded,
for 4mm shaft
diameter

$ 7.49 1 Amazon
https://www.amazon.com/uxcell-Silver-Pre
mium-Flanged-Bearing/dp/B00G9W20VU

$ 7.49

Unthreaded
spacer

Aluminum, 5mm
lg, for 4mm dia
shaft

$ 2.02 3 McMaster https://www.mcmaster.com/94669A008/ $ 6.06

1/4"-20 Hex
Nut

Black-oxide steel
(pkg of 50)

$ 8.90 1 McMaster https://www.mcmaster.com/95479A111/
12 needed in
total

$ 8.90

1/4"-20
Phillips Head
Screw

Black-oxide steel,
4.5" lg

$ 2.22 2 McMaster https://www.mcmaster.com/91249A646/ $ 4.44

https://www.amazon.com/uxcell-Aluminum-Coupling-Flexible-Connector/dp/B07G6QBR8Y?th=1
https://www.amazon.com/uxcell-Aluminum-Coupling-Flexible-Connector/dp/B07G6QBR8Y?th=1
https://www.amazon.com/uxcell-Aluminum-Coupling-Flexible-Connector/dp/B07G6QBR8Y?th=1
https://www.mcmaster.com/91290A117/
https://www.mcmaster.com/91274A102/
https://www.mcmaster.com/90725A025/
https://www.mcmaster.com/92855A425/
https://www.mcmaster.com/92005A248/
https://www.amazon.com/uxcell-Silver-Premium-Flanged-Bearing/dp/B00G9W20VU
https://www.amazon.com/uxcell-Silver-Premium-Flanged-Bearing/dp/B00G9W20VU
https://www.mcmaster.com/94669A008/
https://www.mcmaster.com/95479A111/
https://www.mcmaster.com/91249A646/

1/4"-20
Phillips Head
Screw

Black-oxide steel,
4.5" lg

$ 2.22 2 McMaster https://www.mcmaster.com/91249A646/ $ 4.44

12V Power
Supply

Power supply for
motor

$ - 1 Pre-owned - - $ -

Small
breadboard

Breadboard for
remote

$ - 1 Pre-owned - - $ -

Medium
breadboard

Breadboard for
motor electronics
and esp32

$ - 1 Pre-owned - - $ -

ESP32 Microcontroller $ - 1 Pre-owned - - $ -

LSM6DS0
IMU

6-axis DOF IMU
module

$ - 1 Pre-owned - - $ -

ESP32 cable

Adapter from
USB-A on
computer to
USB-C on esp32

$ - 1 Pre-owned - - $ -

ESP32 cable

Adapter from
USB-A on
computer to
USB-C on esp32

$ - 1 Pre-owned - - $ -

Wiring and
resistors

Includes jumper
cables and
solid-core wire

$ - 1 Pre-owned - - $ -

Push buttons
Momentary push
buttons

$ - 1 Pre-owned - - $ -

https://www.mcmaster.com/91249A646/

Appendix 2: CAD

Appendix 3: Code

#include <ESP32Encoder.h>

#include <Adafruit_LSM6DSOX.h>

#include <Wire.h>

#define BIN_1 26

#define BIN_2 25

#define LED_PIN 13

#define BTN 12

#define BTN2 13

ESP32Encoder encoder;

Adafruit_LSM6DSOX lsm6dso;

float omegaSpeed = 0;

float omegaDes = 0;

float omegaMax = 45; // CHANGE THIS VALUE TO YOUR MEASURED MAXIMUM SPEED

float accel_y = 0;

float D = 0;

float error = 0;

int theta = 0;

int thetaMax = 4123;

int thetaRange = 50;

int thetaDes = 0;

float errorSum = 0;

float Kp = 5; // TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE

float Ki = 0.05; //note effective value is Ki/10

float resetKp = 1;

float resetKi = 0.05;

//Setup interrupt variables ----------------------------

volatile int count = 0; // encoder count

hw_timer_t* timer0 = NULL;

hw_timer_t* timer1 = NULL;

hw_timer_t * timer2 = NULL;

portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;

portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;

// setting PWM properties ----------------------------

const int freq = 20000;

const int ledChannel_1 = 1;

const int ledChannel_2 = 2;

const int resolution = 8;

const int MAX_PWM_VOLTAGE = 255;

const int NOM_PWM_VOLTAGE = 150;

// button setup -------------------------------------

byte state = 0;

volatile bool DEBOUNCINGflag = false;

volatile bool BUTTONflag = false;

volatile bool DEBOUNCING2flag = false;

volatile bool BUTTON2flag = false;

portMUX_TYPE timerMux2 = portMUX_INITIALIZER_UNLOCKED;

void IRAM_ATTR isr() { // Button 1 isr

BUTTONflag = true;

}

void IRAM_ATTR isr2() { // Button 2 isr

BUTTON2flag = true;

}

void IRAM_ATTR onTime2() { // Debouncing for button 1

portENTER_CRITICAL_ISR(&timerMux2);

DEBOUNCINGflag = false;

portEXIT_CRITICAL_ISR(&timerMux2);

timerStop(timer2);

BUTTONflag = false;

}

void IRAM_ATTR onTime0() { // Debouncing for button 2

portENTER_CRITICAL_ISR(&timerMux0);

DEBOUNCING2flag = false;

portEXIT_CRITICAL_ISR(&timerMux0);

timerStop(timer0);

BUTTON2flag = false;

}

void IRAM_ATTR onTime1() { // Updates encoder values and resets count to

zero

portENTER_CRITICAL_ISR(&timerMux1);

count = encoder.getCount();

theta = count + theta;

if (theta < 0) {

theta += thetaMax;

}

if (theta > thetaMax) {

theta -= thetaMax;

}

//Serial.println(theta);

encoder.clearCount();

portEXIT_CRITICAL_ISR(&timerMux1);

}

void setup() {

// put your setup code here, to run once:

pinMode(LED_PIN, OUTPUT);

digitalWrite(LED_PIN, LOW); // sets the initial state of LED as

turned-off

pinMode(BTN, INPUT); // configures the specified pin to

behave either as an input or an output

attachInterrupt(BTN, isr, RISING);

attachInterrupt(BTN2, isr2, RISING);

timer2 = timerBegin(1000000);

timerAttachInterrupt(timer2, &onTime2);

timerAlarm(timer2, 150000, true, 0);

timerStop(timer2);

timer0 = timerBegin(1000000);

timerAttachInterrupt(timer0, &onTime0);

timerAlarm(timer0, 150000, true, 0);

timerStop(timer0);

Wire.begin(22, 14);

Wire.setClock(400000);

Serial.begin(115200);

ESP32Encoder::useInternalWeakPullResistors = puType::up; // Enable the

weak pull up resistors

encoder.attachHalfQuad(27, 33); // Attache pins

for use as encoder pins

encoder.setCount(0); // set starting

count value after attaching

if (!lsm6dso.begin_I2C(0x6B)) { // Use the address 0x6B found by the

scanner

Serial.println("Failed to find LSM6DSO chip");

while (1) {

Serial.println("Check wiring and reset board");

delay(1000);

}

}

Serial.println("LSM6DSO Found!");

// Set IMU ranges and rates

lsm6dso.setAccelRange(LSM6DS_ACCEL_RANGE_2_G);

lsm6dso.setGyroRange(LSM6DS_GYRO_RANGE_250_DPS);

lsm6dso.setAccelDataRate(LSM6DS_RATE_104_HZ);

lsm6dso.setGyroDataRate(LSM6DS_RATE_104_HZ);

// Method 2

// configure PWM functionalitites with attaching the channel to the GPIO

to be controller

ledcAttach(BIN_1, freq, resolution);

ledcAttach(BIN_2, freq, resolution);

timer1 = timerBegin(1000000); // Set timer frequency to 1Mhz

timerAttachInterrupt(timer1, &onTime1); // Attach onTimer1 function to

our timer.

timerAlarm(timer1, 10000, true, 0); // 10000 * 1 us = 10 ms,

autoreload true

}

void loop() {

switch (state) {

case 0: //motor is stopped

if (CheckForButtonPress() == true) { // Event checker: button 1 is

pressed

state = 1; // Service function: Move to state 1

Serial.println("Button 1 pressed, moving to state 1");

}

else if (CheckForButton2Press() == true) { // Event checker: button 2

is pressed

state = 2; // Service function: move to state 2

setThetaDes(); // Service function: Determines if motor travels CW

or CCW to zero position

Serial.println("Button 2 pressed, moving to state 2");

}

else {

driveMotorSpeed(); // Service function: Uses PWM control to match

motor speed with omegaDes

}

break;

case 1: //motor is running

if (digitalRead(BTN) == false) { // Event checker: button 1 is

released

state = 0; // Service function: Move to state 0

omegaDes = 0; // Service function: sets omegaDes to zero

Serial.println("Button 1 released, moving to state 0");

}

else {

getOmegaDes(); // Service function: Interperts data from the IMU to

set omegaDes

driveMotorSpeed(); // Service function: Uses PWM control to match

motor speed with omegaDes

}

break;

case 2: // the motor is being reset

if (CheckForButton2Press() == true) { // Event checker: button 2 is

pressed

state = 0; // Service function: Move to state zero, aborting the

motor reset

omegaDes = 0; // Service function: sets omegaDes to zero

Serial.println("Button 2 pressed, moving to state 0");

}

else if (abs(theta) < thetaRange) { // Event checker: The motor is

close to its reset position

state = 0; // Service function: Move to state zero, the reset is

complete

omegaDes = 0; // Service function: sets omegaDes to zero

Serial.println("Motor position is reset, moving to state 0");

}

else {

motorReset(); // Service functio: moves the motor towards position

zero

}

break;

}

}

//Other functions

bool CheckForButtonPress() { // Event checker: Returns true if button 1 is

pressed and is not being debounced

if (BUTTONflag==true && DEBOUNCINGflag==false) {

portENTER_CRITICAL_ISR(&timerMux2);

DEBOUNCINGflag = true;

portEXIT_CRITICAL_ISR(&timerMux2);

timerStart(timer2);

return true;

}

else {

return false;

}

}

bool CheckForButton2Press() { // Event checker: Returns true if button 2 is

pressed and is not being debounced

if (BUTTON2flag==true && DEBOUNCING2flag==false) {

portENTER_CRITICAL_ISR(&timerMux0);

DEBOUNCING2flag = true;

portEXIT_CRITICAL_ISR(&timerMux0);

timerStart(timer0);

return true;

}

else {

return false;

}

}

void driveMotorSpeed() { // Service function: PWM control of the motor to

match the speed omegaDes

omegaSpeed = count;

error = omegaDes - omegaSpeed;

errorSum = errorSum + error/10;

D = Kp*error + Ki*errorSum;

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

errorSum = errorSum - error/10;

} else if (D < -MAX_PWM_VOLTAGE) {

D = -MAX_PWM_VOLTAGE;

errorSum = errorSum - error/10;

}

if (D > 0) {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, D);

} else if (D < 0) {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, -D);

} else {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, LOW);

}

}

void motorReset() { // Service function: Returns the motor to the position

it was in when the program was started

error = theta - thetaDes;

errorSum = errorSum + error/10;

D = resetKp*error + resetKi*errorSum;

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

errorSum = errorSum - error/10;

} else if (D < -MAX_PWM_VOLTAGE) {

D = -MAX_PWM_VOLTAGE;

errorSum = errorSum - error/10;

}

if (D > 0) {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, D);

} else if (D < 0) {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, -D);

} else {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, LOW);

}

}

void setThetaDes() { // Service function: determines if the motor should

move CW or CCW to return to the zero position

if (theta > thetaMax/2) {

thetaDes = 0;

}

else {

thetaDes = thetaMax;

}

}

void getOmegaDes() { // Service function: Uses IMU data to set omegaDes

sensors_event_t accel;

sensors_event_t gyro;

sensors_event_t temp;

lsm6dso.getEvent(&accel, &gyro, &temp);

accel_y = accel.acceleration.y;

omegaDes = -accel_y*omegaMax/9.81;

}

Appendix 4: Demo Maze Solution

Appendix 5: User Manual

To operate the maze, hold down the controller’s right button. The maze will move while this button is
depressed. To control the motion of the maze, rotate the controller from side to side about its long axis.
The speed of the maze’s movement is proportional to the tilt angle of the controller.

When pressed, the left button resets the position of the maze to where it was located at startup. It is
recommended to manually reset the maze before removing power to the device, as this will allow the reset
functionality to work nominally during future use.

