KinetiHoop

ME 102B Final Report

Team 3: Parth Behani, Aarav Goel, Aathavan Senthilkumar, Bryan Yim

Opportunity

In an effort to fix the staleness of classic arcade games, we wanted to make a new, more
interactive, and more engaging arcade game. We decided to focus on a variation of the age-old basketball
shooting game, where a player is challenged to score as many shots as possible into a stationary hoop in a
fixed amount of time. To make this more exciting, we aimed to make a 3-axis hoop which can translate in
the x and y direction as well as tilt the backboard forwards and backwards. We wanted the game to be
more dynamic where, as the player scores more points, the hoop could move in increasingly more erratic
and difficult-to-make patterns. Additionally, we imagined a two player game where one player tries to
land as many shots as they can while the other player can control the hoop’s movement to try and make
their opponent miss.

Strategy

Our high level strategy was to translate vertically and horizontally using timing belts and tilt
forwards and backwards using a worm gear. For each translation axis, a motor spins a shaft with an
attached pulley. This pulley drives a timing belt which is connected to a moving plate that rides along
linear rails. Before each game, the device would calibrate each axis by driving each motor until a
mechanical end stop switch is hit, identifying the zero or “home” coordinate. The player has access to a
push button to advance through each state of the game and a screen showing which guides the player on
what each state does and displays score.

Our achieved specifications differed slightly from what we initially imagined. We achieved x and
y axis motion, but were unable to integrate the tilting mechanism due to a few different factors including
ESP32 pin limitations, motor driver issues, and a lack of time for testing. We initially hoped to be able to
span either axis in less than 1 second, but that ended up being closer to 1.75 seconds. We believe we can
still reach 1 second using a higher voltage power supply, however, we found that this was more than
sufficient for a human reaction time anyways. In addition to manual control, we would have liked to
implement automatic trajectory planning, but were unable to do so within the semester.

Physical Device

Belf ket alas

earigSll fl?x}l)\e SL?{’T
A Coupler=- *

, | Ao
Figure 1, 2, & 3: From left to right: photos of fully assembled machine, pulley sub-assembly, and tilt
sub-assembly with sensors and actuators highlighted

Decisions & Calculations

Linear guide rail thickness requirements:

The solid steel linear guide rails are our single heaviest moving components and therefore
the lowest hanging fruit to save weight, and so with limited time, we first determined how light
we could make them, starting with the smallest § mm diameter available in 0.5 m length.

R R

F

Each x-axis guide rail, since there are two of them, must support half of the weight of the
entire y-axis and tilt sub-assemblies. Though in reality the beam experiences a load at two points
spaced "5 apart along the beam's length, we simplified the problem to be a single point load at the
center as a worst case approximation. The standard formula for the maximum deflection at the
center of a beam simply supported at both ends is:

_FL

max T 48EI

Where the applied force F = mg/2 = 0.5 * 1.192kg * 9.81m/52/2 = 5.85N, length

L = 0.5m, young’s modulus: £ = 200 * 109Pa, and second moment of area:

' m(0.008m)"

I'=—= 64

=2.01* 10_10m4. This results in Smax = 0. 37mm which is more than

tolerable without causing alignment issues, validating our choice of 8 mm diameter guide rail.

Torque and speed requirements:
For the x-axis motor, the aim was to determine a cost-efficient, high torque motor to carry the
weight of the gantry system including the y-axis system. Accounting for the weight of the
system, approximately 1192 grams, and the pulley diameter of 10 mm with a distance of 200 mm
to be traversed in .5 seconds we can calculate desired torque.
First starting with acceleration:

~2.02 04

_ 2
= 5% ~ 03" 1.6m/s

We obtain static, dynamic, and total force:

F,=1.192-9.81 =11.70N
F;=1192-1.6 =191N
Fioter = 11.70 +1.91 = 13.61 N

This allows us to get torque, which then, using tension ratio equations, helps us calculate the
tension in the belts:

7 =13.61-0.005 = 0.06805 N-m

T —-Ty= L
T
T
T,
T, . 1361

~0.005

0.06805

= T = 092 — 2,565

13.61
3.6 =8.69N

T 2565 1 1.565

T7 = 2.565 - 8.69 = 22.29N

=13.61N

This led to the decision of purchasing the motors with the right torque as seen in our BOM in
Appendix 1. The y-axis motors underwent the same calculations albeit with a traversal of 100
mm and a mass of 343 grams.

Diagrams

X Potentiometer Y Potentiometer
ol 'lle
+3.3V o -
Ground -3.6V
[[RISENEOR, ESP Battery
X_AXIS_ENCOTER_PIN_ 1
x_Axis_Excorfr g
X ror X_END_STOP_PIN
Y ror
e b e
v_axis_excaber_piv_2 (< ~~S#EPS 32 TON_PIN
v_axis motor_pik 1 i Y_END STOP.PIN
H Screen SD
Nt w
Pl 3 oKD resistor
yo - ¥
X Motor Batiry
X Motor Power
X Motor Encoder
S\t
S
b—\s ot -5V
A
Y Motor Batiry
NS — g o
iy 7 Y Motor Power |
A a ‘ o
—
/]
o

Gameplay Screen

Ground

D

X End Stop

D
¥ End Stop

Figure 4: Circuit diagram with all
implemented components

Reflection

Button pressed /
Reset score

Game Over
(S Game timer expires /
STOP x-axis motor
STOP y-axis motor

@

Power On
Button pressed /
Start calibration timer
START x-axis motor
Waiting for
Calibration

(9 Calibration timer expires /
STOP x-axis motor »
X-Axis
Calibration

X-axis end stop hit /
STOP x-axis motor
START y-axis motor

(O calibration timer expires /
STOP y-axis motor .
Y-Axis
Calibration

Y-axis end stop hit /
IR sensor triggered / STOP y-axis motor

Increase Score

Waiting for
Game Start

Game On

Button pressed /
Start game timer

10 ms timer /

RUN x-axis motor

RUN y-axis motor

(controlled by

potentiometers)

Figure 5: State diagram with all implemented components

Looking back at the semester, we started off with a pretty ambitious set of goals. Though we did
not finish all of them, we were still able to make a project we were proud of. Things that worked well for

us include: finding a project idea that all team members were genuinely excited about working on,
maintaining version history of our CAD and code throughout the process, and talking often to the
machine shop staff about our manufacturing and implementation ideas for their feedback. Some things
that we wish we realized earlier include: breaking up official deliverables into smaller parts so we can
iterate on them before the due date, having a more defined break up of who is working on what for each
deliverable, and realizing that some ESP pins have special behavior on boot up or during flashing.

Appendix 1: BOM

Name

Quantity

Mechanical - Tilt

Basketball Hoop 1
Shaft (4 mm Dia.) 1
Shaft Collar (4 mm 10
Bore Dia.)
Flanged Shaft Collar (4
. 4

mm Bore Dia.)
Sleeve Bearing (4 mm

. 2
Bore Dia.)
Worm + Worm Gear 1
Micro Motor + Encoder 1
Micro Motor Driver 1
Micro Motor Bracket 1

Aluminum Stock (1/8"
Thick)

-

Steel Stock (1/16"
Thick)

-

Linear Guide Rail Set 1

(X-Axis)
Linear Guide Rail Set 1
(Y-Axis)
Shaft (1/4" Dia.) 1
Shaft Collar (1/4" Bore

. 8
Dia.)
Sleeve Bearing (1/4" 4
Bore Dia.)
Timing Belt Pulley 5
Timing Belt 1
Timing Belt Clamp 10
Idler Pulley 2
Flexible Shaft Coupler 5
Motor 2
Motor Driver 2
Motor Bracket 2

Unit Cost

$9.89

$5.25

$0.65

$2.50

$0.00

$9.99

$0.00
$0.00

$0.00

$20.64

$0.00

$29.99

$21.99

$8.37

$2.50

$0.00

$1.60

$16.99

$1.30

$0.00

$2.70

$48.95
$11.95

$3.98

Total Cost

$9.89

$5.25

$6.49

$9.99

$0.00

$9.99

$0.00
$0.00

$0.00

$20.64

$0.00

$29.99

$21.99

$8.37

$19.98

$0.00

$7.99

$16.99

$12.99

$0.00

$13.49

$97.90
$23.90

$7.96

Vendor

Amazon

McMaster

Amazon

Amazon

Igus

Amazon

Polulu
Polulu
Polulu

Jacobs
Material
Store

Student
Machine
Shop

Amazon

Amazon

McMaster

Amazon

Igus

Amazon

Amazon

Amazon

Student
Machine
Shop

Amazon

Polulu
Polulu

Polulu

Part
Number

BOTKX246A
E

1327K507

BOCQ2RDD
HG

BO7PFVKJY
T

LFM-0405-0
4

BODFCVMC
™

2215
2130

989

N/A

N/A

BOBKJJXCV
N

BOBKK68J2
T

1327K66

B07GTC62
MH

JFI-0405-04

BO7BT6MV
XB

B097T4DF
M6

B0894BG3V
K

N/A

B09137356

F

4843

2999

2676

hitps://www.amazon.com/dp/BOTKX246AE
https://www.mcmaster.com/1327K507
hitps://www.amazon.com/dp/BOCQ2RDDHG
https://www.amazon.com/dp/B07PFVKJYT
https:/www.igus.com/product?artNr=LFM-0
405-04
https://www.amazon.com/dp/BODFCVMC1
M

https://www.pololu.com/product/2215
https://www.pololu.com/product/2130
https:/www.pololu.com/product/989
https://store.jacobshall.org/products/24x24x

-1-8-6061-aluminium-plate

N/A

Mechanical - Gantry

https://www.amazon.com/dp/BOBKJJXCVN

https://www.amazon.com/dp/BOBKK68J2T
hitps:/www.mcmaster.com/1327K66,
https://www.amazon.com/dp/B07GTC62MH

2. = M

0504

https://www.amazon.com/dp/B07BT6MVXB

https:/www.amazon.com/dp/BQ97TADEM6

https://www.amazon.com/dp/B0894BG3VK

N/A

https:/www.amazon.com/dp/B09137356F
https://www.pololu.com/product/4843
https://www.pololu.com/product/2999
hitps://www.pololu.com/product/2676

https://www.amazon.com/dp/B01KX246AE/
https://www.mcmaster.com/1327K507/
https://www.amazon.com/dp/B0CQ2RDDHG
https://www.amazon.com/dp/B07PFVKJYT
https://www.igus.com/product?artNr=LFM-0405-04
https://www.igus.com/product?artNr=LFM-0405-04
https://www.amazon.com/uxcell-Worm-Gear-Set-Reduction/dp/B0DFCVMC1M/
https://www.amazon.com/uxcell-Worm-Gear-Set-Reduction/dp/B0DFCVMC1M/
https://www.pololu.com/product/2215
https://www.pololu.com/product/2130
https://www.pololu.com/product/989
https://store.jacobshall.org/products/24x24x-1-8-6061-aluminium-plate
https://store.jacobshall.org/products/24x24x-1-8-6061-aluminium-plate
https://www.amazon.com/dp/B0BKJJXCVN
https://www.amazon.com/dp/B0BKK68J2T
https://www.mcmaster.com/1327K66/
https://www.amazon.com/AZSSMUK-Double-Clamp-Collars-4-Piece/dp/B07GTC62MH/
https://www.igus.com/product?artNr=JFI-0405-04
https://www.igus.com/product?artNr=JFI-0405-04
https://www.amazon.com/dp/B07BT6MVXB/
https://www.amazon.com/Timing-Meters-Creality-Anycubic-Printer/dp/B097T4DFM6/
https://www.amazon.com/Eilumduo-9x40mm-Timing-Aluminum-Printers/dp/B0894BG3VK
https://www.amazon.com/dp/B09137356F
https://www.pololu.com/product/4843
https://www.pololu.com/product/2999
https://www.pololu.com/product/2676

: " Student
Aluminum Stock (1/4 1 $0.00 $0.00 | Machine N/A N/A
Thick)
Shop
Mechanical - Misc.
Screws, Nuts, + 1 $14.98 $14.98 Amazon BOBN297M .
Washers P5 hitps.//www amazon.com/dp/BOBN297MPS
) https://us store.bambulab.com/products/pla
Filament 1 $0.00 $0.00 = Bambu N/A -
-basic-filament
ESP32 1 $0.00 $0.00 = Adafruit 3619 https:/www.adafruit.com/product/3619
USB Cable 1 $0.00 $0.00 = Adafruit 4474 https://www.adafruit.com/product/4474
Power Supply 1 $0.00 $0.00 = Adafruit 276 https://www.adafruit.com/product/276
Breadboard 2 $0.00 $0.00 = Polulu 352 https:/www.pololu.com/product/352
BO7QXXMW | https://www.amazon.com/dp/BO7QXXMWR
Jumper Cable 1 $0.00 $0.00 = Amazon Q
RZ z
Student
Wire 1 $0.00 $0.00 = Machine N/A N/A
Shop
Resistor 1 $0.00 $0.00 = Sparkfun 10969 https://www.sparkfun.com/products/10969
Student
Button 1 $0.00 $0.00 = Machine N/A N/A
Shop
Potentiometer 2 $0.00 $0.00 = Adafruit 356 https://www.adafruit.com/product/356
BO7PFCC7
IR Sensor 1 $0.00 $0.00 | Amazon NO cere https://www.amazon.com/dp/BO7PECC76N.
Limit Switch 10 $0.60 $5.99 = Amazon ngMZVG https://www.amazon.com/dp/B07X142VGC
Screen 3 $4.00 §11.99 ' Amazon BOBWTFNO https://www.amazon.com/dp/BOBWTENIWE
WF
* All items with a cost of $0.00 were either provided for free by class resources or Sum Total $356.76

pre-owned by the team Cost

https://www.amazon.com/dp/B0BN297MP5
https://us.store.bambulab.com/products/pla-basic-filament
https://us.store.bambulab.com/products/pla-basic-filament
https://www.adafruit.com/product/3619
https://www.adafruit.com/product/4474
https://www.adafruit.com/product/276
https://www.pololu.com/product/352
https://www.amazon.com/dp/B07QXXMWRZ/
https://www.amazon.com/dp/B07QXXMWRZ/
https://www.sparkfun.com/products/10969
https://www.adafruit.com/product/356
https://www.amazon.com/Infrared-Avoidance-Transmitting-Receiving-Photoelectric/dp/B07PFCC76N/ref=asc_df_B07PFCC76N?mcid=9803be811986359f92a57c1be91cb750&hvocijid=7216259523640859551-B07PFCC76N-&hvexpln=73&tag=hyprod-20&linkCode=df0&hvadid=721245378154&hvpos=&hvnetw=g&hvrand=7216259523640859551&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9198132&hvtargid=pla-2281435178298&th=1
https://www.amazon.com/dp/B07X142VGC
https://www.amazon.com/dp/B0BWTFN9WF

Appendix 2: CAD Screenshots

Isometric View:

il ey Sob-Assembly

Tilk Sub -Assembly

Front Orthographic View:

Lneac

bvde Rals

Lwneac
o Gu‘d& ﬁqﬂs o

Left Orthographic View:

Top Orthographic View:

Shaft
Fl‘hsed Shaft Collac
Shoft collar

Woem (rear

beann i

Pulley Sub-Assembly:

Motor Flexible e Pobey

Bnclt Cowler

T?n“ma RBelt ?V“ ey

e&aﬁna Shalt Collar

Appendix 3: Complete code

<ESP32Encoder.h>

de <LiquidCrystal I2C.h>

lcdColumns = 16;

lcdRows = 2;
LiquidCrystal I2C 1lcd(0x27, lcdColumns, lcdRows) ;

PIN 26

BUTTON PIN 32

PWM RESOLUTION 8
ledChannel 1 1

ESP32Encoder X ENCODER;
[ESP32Encoder Y ENCODER;

count
deltaT

game_over_

revs = 13;
cpr =

theta = 0;

48;

thetaDes = 0;
thetaMax
D = 0;

;

X_POTReading g

= Uy

count y =

revs y = 5;
cpr_y = 48;
theta y = 0;
thetaDes_y = 0;
thetaMax_y =
Dy = 0;
Y POTReading = 0;

States {
IDLE,

CALIBRATING,

States currentState =
buttonPressed = fa

timeoutOccurred =

xAxisHit

yAxisHit

*timer2
* timerO

* timerl

[portMUX TYPE timerMux0
portMUX TYPE timerMuxl
[portMUX TYPE timerMux3

debouncing
madeHoop =

gameOver =

counter = 0;

revs * cpr;

0g

revs_y * cpr_y;

IDLE;

;

false;

portMUX INITIALIZER UNLOCKED;
portMUX INITIALIZER UNLOCKED;
portMUX INITIALIZER UNLOCKED;

IRAM ATTR calibrationB

buttonPressed = true;

IRAM ATTR onTimel () {
ENTER CRITICAL ISR (&timerMux3);

. ISR (&timerMux3) ;

game_over counter = game over counter + 1;

IRAM ATTR
portENTER CRIT ISR (&timerMux0) ;
timeoutOccurred = true;

L ISR (&timerMuxO) ;

IRAM ATTR
POrtENTER CRIT ISR (&timerMuxl) ;
madeHoop = fal
buttonPressed = £

debouncing = fa

ISR (&timerMuxl) ;

IRAM ATTR xAXis

(currentState == X AXIS CALIBRATING) ({

xAxisHit = true;

IRAM ATTR yAx X
(currentState == Y AXIS CALIBRATING) ({

yAxisHit = true;

IRAM ATTR pointTri

madeHoop = true;

tln ("Setup");

CALIBRATION_BUTTON_PIN, INPUT);
hInterrupt (CALIBRATION BUTTON PIN, calibrationButtonISR, RISING);

e (X END STOP PIN, INPUT PULLUP);
(Y END STOP PIN, INPUT PULLUP);

pt (X _END STOP_PIN, xAxisStopISR, RISING);

pt (Y END STOP PIN, yAxisStopISR, RISING);

ach (X_AXIS MOTOR PIN 1, PWM FREQUENCY, PWM RESOLUTION) ;
ach (X_AXIS MOTOR PIN 2, PWM FREQUENCY, PWM RESOLUTION) ;
ach (Y_AXIS_MOTOR_PIN 1, PWM FREQUENCY, PWM RESOLUTION) ;

(Y_AXIS MOTOR PIN 2, PWM FREQUENCY, PWM RESOLUTION) ;

ledcAttach

ite v

te (X AXIS MOTOR PIN 1, LOW)
ite (X AXIS MOTOR PIN 2, LOW);
()i
()

7

rite (Y_AXIS _MOTOR PIN 1, LOW
rite (Y AXIS_MOTOR PIN 2, LOW

7

ESP32Encoder: :useInternalWeakPullResistors = puType: :up;
1alfC X_AXTIS ENCODER PIN 1, X AXIS ENCODER PIN 2);

ad (Y AXIS ENCODER PIN 1, Y AXIS ENCODER PIN 2);

= (IR_SENSOR_PIN, INPUT);
nterrupt (IR_SENSOR_PIN, pointTrigger, RISING);

Timer () ;

alibrationTimer () ;

de (X_POT, INPUT);
(Y_POT, INPUT);

1]l .println ("Started in Idle state. < but to start

timer0 = timerBegin (
timerAttachInterrupt (timer0, &debounceTimerCallback) ;
timerAlarm(timer0, 1500000,

timerStop (timer0) ;

tupCal

timer2 = timerB in (TIMER FREQUENCY) ;

timerAttachInterrupt (timer2, &timeoutISR) ;
tim arm (timer2, TIMEOUT DURATION * 1000,

time op (timer?2) ;

SetupPITimer () {
timerl = timerBegin (1000000) ;
sgonTimel) ;

timerAlarm(timerl, 10000, true, 0);

~sor (0,0) ;
(currentState) {

IDLE:

(buttonPres
staz x1sC ibrationSer

currentState = X AXIS CALIBRATING;

HitChecker () == true) {
librationService () ;

currentState = Y AXIS CALIBRATING;

calibration.");

(CheckTimeout ())

calibration time

currentState = IDLE;

currentState

(CheckTimeout
calibration ti

currentState

READY TO PLAY:
(bt 1Press
StartGame () ;

currentState = GAME_ON;

>rMadeHoop ()) {
re () ;
GAME ON;

currentState = IDLE;

RunPositionControl

theta += count;

X POTReading = analogRead (X POT) ;

thetaDes

p (X_POTReading, 0, 4095, 0, thetaMax);

error = thetaDes - theta;

sum += (error/10);

D = Kp * error + Ki * sum;

> MAX_PWM VOLTAGE) {
MAX PWM VOLTAGE;

if (D < -MAX PWM VOLTAGE) {
-MAX PWM VOLTAGE;

rite (X_AXIS MOTOR PIN 1,
rite (X AXIS MOTOR PIN 2,
if (D < 0) {

ite (X AXIS MOTOR PIN 2,

ite (X AXIS MOTOR PIN 1,
{

-ite (X _AXIS MOTOR PIN 2,
Write (X AXIS MOTOR PIN 1,

thetaDes) ;

nony
.print ("PWM Duty:");

.print

.print

£ (
i (
(

(

l.println (D) ;

RunPositionControl Y () {

theta_ y += count_y;

Y POTReading = analogRead(Y POT);
thetaDes_y = map(Y_POTReading, 0, 4095, 0, thetaMax y);

error_y = thetaDes_y - theta y;

sum_y += (error y/10);

(D_y > MAX PWM VOLTAGE) {
D_y = MAX_PWM VOLTAGE;

se if (D y < -MAX PWM VOLTACGE) {
D y = -MAX PWM VOLTAGE;

(D_y > 0) {
rite (Y AXIS MOTOR PIN 1,
ledcWrite (Y AXIS MOTOR PIN 2,
if (Dy < 0) {
ite (Y _AXIS MOTOR PIN 2,
ite (Y _AXIS MOTOR PIN 1,

-ite (Y AXIS MOTOR PIN 2,
Write (Y AXIS MOTOR PIN 1,

plotControlData Y();

olbData Y() {

"Position y:"):

(
(
.print (thetaDes_y);
(S

.print ("PWM Duty y: W e

.print

l.println(D_y);

CheckTimeout () {
(timeoutOccurred) {
timeoutOccurred = false;

return true;

direction = 0,

pwm_value = 0;

(pos==-1) {

pwm value MAX PWM VOLTAGE;

pwm_value

(direction == 0) {
le ite (M1, LOW) ;
ite (M2, LOW);

(direction == -1) {
~ite (M1, LOW);

Write (M2, pwm value);

(direction == 1) {
-ite (M1, pwm value);
rite (M2, LOW);

sMotor (direction = 0, pos = -1){
r (X_AXIS MOTOR PIN 1, X AXIS MOTOR PIN 2, direction,
(direction == 0) {

Serial.println("X-axis motor stopped");

s motor running");

tor (direction = 0, pos = -1){
r (Y AXIS MOTOR PIN 1, Y AXIS MOTOR PIN 2, direction,
(direction == 0) {

or stopped") ;

Serial.println("Y-axis motor running");

buttonP ecker () {

(buttonPressed && !debouncing) {

buttonPressed = false;
debouncing = true;
timerStart (timer0) ;

tr

(xAxisHit==true)
xAxisHit = false;

return true;

urn fal

VAxX tChecker () {

(yAxisHit==true) {

yAxisHit =

return true;

rn false;

al.println("Cali ation Error: Timeout occurred");

al.println ("Going back to Idle. Press button to try calibration again.");

(0,0);
ibration") ;
0,1) g

nt ("timeout") ;

p (timer?2) ;

start (timer?2) ;

timeoutOccurred =

al.println("X-axis calibration started");
clear();

print ("Cal
rted") ;

xisMotor (1) ;

tart (timer2) ;

~alibration

endCalibratic
driveXAxisMotor (0) ;

driveYAxisMotor

> (timer?2) ;

d (timer2) ;

plete!");

- ("Calibration") ;

sor (0,1) ;

cd.print ("Pre

buttonPressed

CheckFo

(madeHoop && !debouncing) {
debouncing = trtu
madeHoop = fa

Start (timer0) ;

(game over counter > 3000) {

portENTER CRITICAL (&timerMuxl) ;
game over counter = 0;
tEXIT CRITICAL (&timerMuxl) ;

turn true;

false;

CheckEncoder () {
(deltaT) {
portENTER CRITICAL (&timerMuxl) ;

po

deltaT

return true;

StartGame () {

ial.println("Game started");

Seri:

int ("Your
print (score) ;

al.println (score);

timerStop (timerl) ;
timerEnd (timerl) ;

buttonPressed = false;

Increa

score += 1;

int (score) ;

println (score);

alibrationTimer () ;

theta = 0;
deltaT = 0;

game over counter =0;

