
Motorized Optical Translation Stage
Benjamin Capinski & Karla Morales De Leon

Opportunity
One of the most time-consuming aspects of research when working with lasers is ensuring proper laser
beam alignment and collimation. This process, normally done by hand, can be automated through the use
of linear motorized translation stages. Unfortunately, solutions from conventional photonics suppliers can
cost thousands upon thousands of dollars, with the cost rising for each additional centimeter of travel
distance. We aim to make precision control of laser beam paths cheaper than ever and make motorized
translation stages ubiquitous on optical tables worldwide by slashing that cost by several orders of
magnitude. We will do that by sourcing significantly cheaper components, sacrificing a small amount of
precision, accuracy, and repeatability in exchange for a much more affordable product.

Strategy
To demonstrate our translation stage, we have incorporated it into a beam expander that increases the red
dot of a laser pointer by fivefold. Effectively a telescope, our setup uses a static 35mm lens to focus the
laser beam, followed by a motorized 175mm lens to re-collimate the beam at its increased size. If these
lenses are not precisely 210mm apart, the beam will undesirably diverge or converge. The latter lens
position can be moved using a potentiometer in order to maintain this separation if the first lens moves.

In lieu of an optics table to supply rigidity, we have attached the whole assembly, including the laser and
optics, to segments of aluminum T-slot framing. Our initial goal was at least 6 inches of travel distance
and roughly 0.5 inches/second of translation speed. Our final construction surpassed this comfortably, at
approximately ~10 inches of travel distance and a maximum of 1.5 inches/second of translation speed.

Fig. 1: From left to right; the laser mount, lens holder 1 (static), and lens holder 2 (motorized).

Fig. 2: An axial view of the rail, showcasing the translation stage
itself. Note the lead screw, guide rails, and 3D-printed lens

holder. A flexible shaft coupler is hidden by the bottom plate.

Functional-Critical Decisions & Calculations
The bulk of our calculations focused on the non-mechanical
aspects of our project, such as simulating the laser beam path and
its intensity at certain points. For the translation stage, we did a
back-of-the-envelope calculation to verify that the torque
required was easily satisfied by our motor. Unfortunately, this is
only the torque required when the system is not binding and
fighting itself. That resistance is difficult to calculate and since
we had the parts on hand, we just tested it in situ. It worked.

τ = 𝐹·𝐿
2πη = (0.4 𝑁)*(0.01 𝑚)

2π·0.5 = 0. 00127 𝑁𝑚
Where η is the efficiency of a lead screw (between 0.2 and 0.8), about 50% for ours, L is the lead, so
about 10 millimeters = 0.01 meters, and the force F is the weight of the stage carriage times the friction
coefficient. F = mgµ = 100 grams * 9.81 meters per second squared * 0.4 ≃ 0.4 Newtons. Excellent
machining tolerances, alignment, and structure rigidity are crucial for approaching this ideal torque value.

Circuit & State Transition Diagrams
Fig 3: Circuit diagram made w/ draw.io & our state diagram.

Reflection
What worked well - leveraging each other's strengths by delegating programming, CAD, and machining
tasks to the appropriate team member. What we wished we did differently - start everything sooner, from
machining to programming. This would’ve allowed us to achieve the full complexity we planned for.

APPENDIX
Bill of Materials
The overwhelming majority of our parts were scavenged from salvage bins in the physics and mechanical
engineering buildings, or lent to us by the machine shop. The following BOM represents our best-faith
representation of the parts we used, although we were unable to find model numbers for some parts.

Part Name Quantity Cost per tem Total cost

635nm 5mW red laser (for safety during display) 1 (1 min.) 52 52

1.5” Aluminum T-slot - 3ft 1 (1) 34.40 0 (found)

1” lens kit (f = 35 to 175mm) 1 0 0

Photodiode 1 0 0

All the following components were sourced/CAD modeled from McMaster-Carr

6208K492_Clamping Precision Flexible Shaft Coupling 1 0 0

4316N121_Tapped Linear Motion Shaft 1 0 0

8020-1515 X 12 2 0 0

90044A254_Black-Oxide Alloy Steel Socket Head Screw 1

91274A127_Zinc-Flake-Coated Alloy Steel Socket Head
Screw (mounting shafts)

4 0 0

91239A420_Button Head Hex Drive Screw 6 0 0

2391N24_Fast-Travel Ultra-Precision Lead Screw 1 0 0

4316N121_Tapped Linear Motion Shaft 2 0 0

25d-metal-gearmotor-20.4-encoder 1 0 0

94209A619_Thread-Forming Screws for Soft Metal
(mounting motor)

2 0 0

Ball Bearing Holder (3D Printed, will utilize ME Machine
Shop)

1 0 0

6208K492_Clamping Precision Flexible Shaft Coupling 1 0 0

47065T845_Silver Corner Bracket 3 0 0

90591A260_Zinc-Plated Steel Hex Nut 2 0 0

Stage Lense Holder (3D Printed) 1 0 0

2391N11_Flange Nut with M8 x 2.50 mm Thread for
Fast-Travel Ultra-Precision Lead Screw

1 0 0

4473N18_Mounted Ball Bearing with Two-Bolt Flange 1 0 0

90044A255_Black-Oxide Alloy Steel Socket Head Screw
(To attach Flang Nut for lead screw)

6 0 0

End piece to connect Shafts (3D Printed, will utilize ME
Machine Shop)

1 0 0

2391B11 Flange Nut 1 0 0

PLA Filament
(OVERTURE PLA)

1 15.21 15.21

Cable Connector
(AMAZON)

1 10.46 10.46

Calipers
(VINCA)

1 21.94 21.94

Total Spent: ~$97

CAD Screenshot

Code
This is the code we used for the showcase. It implements manual control of the translation stage.
#include <ESP32Encoder.h>

#define BIN_1 26 // direction

#define BIN_2 25 // duty

#define LED_PIN 13 // built-in LED

#define POT 15 // trimpot

#define PD 14 // photodiode

#define BTN 32 // button

#define IDLE 1 // idle state

#define MANUAL 2 // manual state

// Setup variables

volatile bool buttonIsPressed = false;

int state = IDLE;

int pot_low_threshold = 1500;

int pot_high_threshold = 2500;

int pot_value = 2000;

hw_timer_t* debounce_timer = NULL;

int debounceDelay = 500;

// Open loop control variables

const int freq = 5000;

const int resolution = 8;

const int MAX_PWM_VOLTAGE = 240;

// Functions to be called when interrupts are triggered

void IRAM_ATTR button_isr() {

if (timerReadMilis(debounce_timer) > debounceDelay) {

buttonIsPressed = true;

timerRestart(debounce_timer);

}

}

void setup() {

pinMode(BTN, INPUT);

pinMode(POT, INPUT);

pinMode(LED_PIN, OUTPUT);

attachInterrupt(BTN, button_isr, CHANGE); // TODO maybe change to FALLING

ledcAttach(BIN_1, freq, resolution);

ledcAttach(BIN_2, freq, resolution);

debounce_timer = timerBegin(1000000);

Serial.begin(115200);

// Initialize

led_off();

disable_motor();

}

void loop() {

switch (state) {

case IDLE:

if (CheckForButtonPress()) {

led_on();

reset_pot();

state = MANUAL;

}

break;

case MANUAL:

if (CheckForButtonPress()) {

disable_motor();

led_off();

state = IDLE;

} else {

set_duty();

}

break;

}

}

bool CheckForButtonPress() {

if (buttonIsPressed == true) {

buttonIsPressed = false;

return true;

} else {

return false;

}

}

void reset_pot() {

pot_value = analogRead(POT);

pot_low_threshold = pot_value - 250;

pot_high_threshold = pot_value + 250;

}

void set_duty() {

pot_value = analogRead(POT);

if (pot_value > pot_high_threshold) {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, MAX_PWM_VOLTAGE);

} else if (pot_value < pot_low_threshold) {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, MAX_PWM_VOLTAGE);

} else {

disable_motor();

}

}

void disable_motor() {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, LOW);

}

void led_on() {

digitalWrite(LED_PIN, HIGH);

}

void led_off() {

digitalWrite(LED_PIN, LOW);

}

