
Report: Ravioli Machine
Group 9: Ian Zhang, Annette Bennet, Marissa Shoji

Opportunity
Ravioli is a common popular dish; however, current methods of making it involve a lot of time and effort,
which may pose problems for disabled people, or those who are too busy. The goal of our project is to
automate the ravioli making process, making it faster and easier. Rather than requiring an individual to
press and cut each individual ravioli, similar to pasta machines, our project continuously presses two
sheets of premade dough together around filling fed into a hopper at the top, automatically shaping and
cutting the ravioli at the press of a button. This allows for a lot of ravioli to be made rapidly with minimal
effort.

High-level Strategy
Our ravioli maker consists of two rollers that press sheets of dough together around the filling, which is
fed in through the hopper at the top. The two sheets of dough are fed in through the sides of the machine
in the gap between the hopper and the casing, and the rollers shape and cut the ravioli. The machine stops
when the filling runs out, or when the user pushes the button. The motor turns the rollers with enough
torque to simultaneously cut through the dough and draw more of it into the machine on its own, with
little help from the user. The roller speed is adjusted by turning the potentiometer. This allows a large
batch of ravioli to be shaped and cut, which emerges from the bottom of the machine as a sheet of ravioli
that tears apart easily along the cut lines. The machine is easily disassembled for cleaning, and the motor
module can be removed and replaced with a hand crank, if the user chooses to crank the ravioli maker by
hand.

Our initial goals also included having the ravioli maker stop if the dough or the filling runs out, and
having the machine load the dough and filling itself; of these, we were able to accomplish having the
machine stop if it senses that the filling has run out.

Figure 1: Side View of Ravioli Maker (Left) and Top View of Ravioli Maker (Right)

Calculations

Motor Selection Calculations
Roller Diameter: 25 𝑚𝑚 →
Roller Radius: 12. 5 𝑚𝑚
Pasta Manual Roller Force: 2 𝐾𝑔

𝐹 = 𝑚𝑔 = 2 · 9. 81 = 19. 62 𝑁
τ = 𝐹𝑟 = 19. 62 · 0. 0125
 = 0. 24525 𝑁𝑚 ≈ 2. 5 𝐾𝑔 · 𝑐𝑚

Factoring in that we are pressing together 2 sheets of
pasta and need to also cut the dough, we will set

as the target torque. As we are making3. 5 𝐾𝑔 · 𝑐𝑚
a ravioli machine which is similar to a pasta maker,
the rollers should rotate slowly. rotation per second1
is reasonable. Therefore the target speed is .60 𝑅𝑃𝑀

Figure 2: Motor Selection Data

Bearing Selection Calculations
Using the previously calculated value for the force from the manual roller, we are able to calculate the
radial force on the bearings. The rollers and gears are 3D printed and thus extremely light, and therefore
have been ignored for this calculation. The largest force on the shaft comes from the resistance of cutting
the dough, which acts perpendicular to the shaft. The shaft is symmetric, with both bearings equal
distance from the center of the shaft, where the force is applied. Thus, both bearings take on the same
amount of radial force.

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐿𝑜𝑎𝑑 𝐹𝑎𝑐𝑡𝑜𝑟: 𝐹
0

= 1. 2

Pasta Manual Roller Force: 2 𝐾𝑔
𝐹 = 𝑚𝑔 = 2 · 9. 81 = 19. 62 𝑁
𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 19. 62𝑁 / 2 = 9. 81 𝑁
𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐿𝑜𝑎𝑑 = 𝐹

0
· 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 11. 772 𝑁

Our bearings must have a
dynamic load of minimum

, the ones we chose 11. 772 𝑁
have a dynamic load of , 1902 𝑁
thus fitting our requirements.

Circuit Diagram

Figure 3. Ravioli Machine circuit diagram made with Fritzing

Figure 4. State Transition Diagram for our Ravioli Machine

Reflection
Our group did well coming up with ideas and improving upon previous designs by performing many tests
with different parts. We were able to test the strength and durability of the hardware of our project before
even finishing the code for the motor because we included the option to turn the machine via a hand
crank, which allowed us to improve the design for the rollers early on in the process. We were also able to
delegate tasks well depending on the skillsets of each member; one person did CAD and design work, one
took the lead on coding, and the last helped with miscellaneous tasks and all manufacturing requiring the
use of the Etcheverry Machine Shop.

Something we struggled with was following a schedule and meeting deadlines; we never established a
formal timeline and self imposed deadlines to make sure all our components would be finished in time,
which led to last minute rushing. When schedules became busy, we also had some struggles with
communication. If we could redo anything, we would definitely establish a self imposed timeline at the
start of the semester, and make agendas for our weekly meetings.

Appendix A
Bill of Materials
Required
Parts Listing Name Quantity Cost Source Links

Motor
100:1 Metal Gearmotor 37Dx73L mm 12V with
64 CPR Encoder (Helical Pinion) 1 $51.95 https://www.pololu.com/product/4755

Microcontr
oller

Adafruit ESP32 Feather V2 - 8MB Flash + 2 MB
PSRAM - STEMMA QT 1 $0.00 https://www.adafruit.com/product/5400

Motor
Driver L298N 1 $0.00 Amazon Link

Potentiomet
er Potentiometer 1 $0.00 Spare

Button Button 1 $0.00 Spare

IR Beam
Sensor

IR Break Beam Sensor with Premium Wire
Header Ends - 5mm LEDs 1 $5.95 https://www.adafruit.com/product/2168

Switch RA1113112R 1 $0.68
https://www.digikey.com/en/products/detail/e-switch/RA11
13112R/3778055

12V
Adapter 12V Adapter 1 $11.99 Amazon Link

Barrel Jack
Adapter Barrel Jack Adapter 1 $0.00 Lab Kit

Breadboard Breadboard 1 $0.00 Lab Kit

Shaft 8mm Shaft 2 $0.00 Spare

Shim 8mm Shim 6 $0.00 Spare

Belleville
Washer 8mm Belleville Washer 2 $0.00 Spare

https://www.pololu.com/product/4755
https://www.adafruit.com/product/5400
https://www.amazon.com/HiLetgo-Controller-Stepper-H-Bridge-Mega2560/dp/B07BK1QL5T/ref=pd_lpo_sccl_2/134-3819738-7863015?pd_rd_w=n7Dme&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=5WH3MS3N0BY43MV5EFKN&pd_rd_wg=bccQq&pd_rd_r=18b05b12-8e1a-4ace-a906-d8f524afa027&pd_rd_i=B07BK1QL5T&psc=1
https://www.adafruit.com/product/2168
https://www.digikey.com/en/products/detail/e-switch/RA1113112R/3778055
https://www.digikey.com/en/products/detail/e-switch/RA1113112R/3778055
https://www.amazon.com/gp/product/B0852HX9HV/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1

Shaft Collar 8mm Shaft Collar 4 $7.99 Amazon Link

Shaft
Coupler 6mm to 8mm Shaft Coupler 1 $9.99 Amazon Link

Bearing 8mm Bearing 6 $11.99 Amazon Link

M2 Heat
Set Insert M2 Heat Set Insert 12 $18.99 Amazon Link

M3 Heat
Set Insert M3 Heat Set Insert 15 $0.00 Amazon Link

M4 Heat
Set Insert M4 Heat Set Insert 17 $0.00 Amazon Link

M6 Heat
Set Insert M6 Heat Set Insert 1 $0.00 Amazon Link

M3 Nut M3 Nut 9 $0.00 Spare

M2 Screw M2 Screw 10 $0.00 Spare

M3 Screw M3 Screw 18 $0.00 Spare

M4 Screw M4 Screw 13 $0.00 Spare

M6 Screw M6 Screw 1 $0.00 Spare

M2 Washer M2 Washer 2 $0.00 Spare

M3 Washer M3 Washer 16 $0.00 Spare

M4 Washer M4 Washer 1 $0.00 Spare

M6 Washer M6 Washer 1 $0.00 Spare

M3
Standoff M3 Standoff 4 $5.99 Amazon Link

M4
Standoff M4 Standoff 1 $5.99 Amazon Link

https://www.amazon.com/gp/product/B0D17CLMJM/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.com/Saiper-Couplings-Connector-Compatible-Accessories/dp/B07S8XJT4D/ref=sr_1_3?crid=YYMC2KYKO7NY&dib=eyJ2IjoiMSJ9.SMdJmdwxKpSIELaP7L1ExlBlOG8P3NTNE9k7VZm3oCFbm9e7yOeMSbiBsk5A7A0uJad1IlGgIh1SFaSsid0dcpfHSv0QOv_on07L30eXBPBCJLFurPz_Hp5aTpHCSoqi1sxE5FVo0G8ACB2jt-xgCUrNNG7MiT4TTvehPbp1iML2fb_kbc1vHqAGHD_N15GEpCIj0Pi710GQwRVomEbXC1mx2fTWWyVAQqXPpIfYg4s.A4bTA_l9SdvWJ59lrdNqGD1_-i4KFIrwusCuFgxRVYs&dib_tag=se&keywords=6mm+to+8mm+shaft+coupler&qid=1733815980&sprefix=6mm+to+8mm+%2Caps%2C176&sr=8-3
https://www.amazon.com/gp/product/B07Z3G8B2X/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&psc=1
https://www.amazon.com/dp/B0CZRD2Y49?ref=ppx_pop_mob_ap_share
https://www.amazon.com/dp/B0CZRD2Y49?ref=ppx_pop_mob_ap_share
https://www.amazon.com/dp/B0CZRD2Y49?ref=ppx_pop_mob_ap_share
https://www.amazon.com/dp/B0CZRD2Y49?ref=ppx_pop_mob_ap_share
https://www.amazon.com/gp/product/B0BPCK2K7S/ref=ppx_yo_dt_b_asin_title_o07_s00?ie=UTF8&th=1
https://www.amazon.com/gp/product/B0BPCKV14W/ref=ppx_yo_dt_b_asin_title_o07_s00?ie=UTF8&th=1

M6
Standoff M6 Standoff 2 $7.79 Amazon Link

PLA
Filament OVERTURE PLA Filament 1 $13.99 Amazon Link

PETG
Filament OVERTURE PETG Filament 1 $14.99 Amazon Link

https://www.amazon.com/gp/product/B08F2854TK/ref=ppx_yo_dt_b_asin_title_o07_s00?ie=UTF8&th=1
https://www.amazon.com/OVERTURE-Filament-Consumables-Dimensional-Accuracy/dp/B07PGY2JP1?ref_=ast_sto_dp&th=1&psc=1
https://www.amazon.com/OVERTURE-Filament-Consumables-Dimensional-Accuracy/dp/B07PGYHYV8?ref_=ast_sto_dp&th=1&psc=1

Appendix B
CAD

Figure #. Ravioli Machine Full Assembly

Figure #. Ravioli Machine Transmission

Appendix C
Code
#include <Arduino.h>

// Pins
#define button 27
#define pot 25
#define ir 26
#define bin1 32
#define bin2 33
#define pwm 14

// State
byte state = 0;

// PWM
const int pwmFreq = 5000;
const int pwmResolution = 8;

// Variables
int currPotValue = 0;
int prevPotValue = 0;
int difference = 0;
int motorSpeed = 0;

// Flags
volatile bool DEBOUNCINGflag = false;
volatile bool BUTTONflag = false;
volatile bool IRflag = false;

hw_timer_t *timer0 = NULL;
portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;

// Button Interrupt
void IRAM_ATTR BUTTONisr() {
BUTTONflag = true;
}

// IR Interrupt
void IRAM_ATTR IRisr() {
if (digitalRead(ir) == LOW) {
IRflag = true;
} else {
IRflag = false;
}
}

// Timer Interrupt
void IRAM_ATTR onTime0() {
portENTER_CRITICAL_ISR(&timerMux0);
DEBOUNCINGflag = false;
portEXIT_CRITICAL_ISR(&timerMux0);
timerStop(timer0);
BUTTONflag = false;
}

void setup() {
pinMode(button, INPUT_PULLUP);
pinMode(pot, INPUT);
pinMode(ir, INPUT);
pinMode(bin1, OUTPUT);
pinMode(bin2, OUTPUT);

attachInterrupt(button, BUTTONisr, RISING);
attachInterrupt(ir, IRisr, CHANGE);

ledcAttach(pwm, pwmFreq, pwmResolution);

// Serial.begin(115200);

timer0 = timerBegin(50000);
timerAttachInterrupt(timer0, &onTime0);
timerAlarm(timer0, 10000, true, 0);
timerStop(timer0);
}

void loop() {

delay(20);

currPotValue = analogRead(pot);
difference = abs((currPotValue - prevPotValue));
prevPotValue = currPotValue;

switch (state) {
case 0: // Idle
if (ButtonEvent() && IREvent()) {
MotorOnService();
}
break;

case 1: // Rolling
if (ButtonEvent() || !IREvent()) {
MotorOffService();
} else if (PotEvent()) {
MotorSpeedService();
}
break;

default: // Error
// Serial.println("SM ERROR");
break;

}
}

// Event Checker: Button Press
bool ButtonEvent() {
if (BUTTONflag && !DEBOUNCINGflag) {
portENTER_CRITICAL_ISR(&timerMux0);
DEBOUNCINGflag = true;
portEXIT_CRITICAL_ISR(&timerMux0);
timerStart(timer0);
return true;
} else {

return false;
}
}

// Event Checker: Potentiometer Turn
bool PotEvent() {
if (difference > 20) {
return true;
} else {
return false;
}
}

// Event Checker: IR Tripped
bool IREvent() {
if (IRflag) {
return true;
} else {
return false;
}
}

// Service: Turn Motor On
void MotorOnService() {
state = 1;
motorSpeed = map(currPotValue, 0, 4095, 185, 230);
digitalWrite(bin1, LOW);
digitalWrite(bin2, HIGH);
ledcWrite(pwm, motorSpeed);
// Serial.println("State 1: Rolling");
}

// Service: Turn Motor Off
void MotorOffService() {
state = 0;
digitalWrite(bin1, LOW);
digitalWrite(bin2, LOW);
ledcWrite(pwm, 0);

// Serial.println("State 0: Idle");
}

// Service: Adjust Motor Speed
void MotorSpeedService() {
motorSpeed = map(currPotValue, 0, 4095, 180, 230);
digitalWrite(bin1, LOW);
digitalWrite(bin2, HIGH);
ledcWrite(pwm, motorSpeed);
// Serial.print("State 1: Set Motor Speed to ");
// Serial.println(motorSpeed);
}

