
Automated Pour-over Coffee Machine

Evan Borzilleri

December 2020

1 Product Description

Like most college students, I love coffee. For the past two years, I have used the
George Howell pour over method1 to brew my coffee every morning. In short,
this brewing method consists of pouring water at 368.7K over the grounds for 15
seconds in a circular or spiral motion, then letting it rest for another 15 seconds.
This process continues for three minutes, with an additional 30 seconds of rest
at the end for the coffee to fully draw down into the brewing carafe. However,
since I typically make coffee in the morning, I am not fully alert and constantly
get distracted, causing me to lose track of where I am in the brewing cycle.
The Howell method is very precise, and any deviations can cause the brew
to taste terrible (overextraction or underextraction). Therefore, I wanted to
make a device that automated the pour over process to ensure I could have a
quality cup of coffee every morning. Automated pour over machines exist, but
cost hundreds of dollars. My design incorporates parts commonly found in the
homes of engineers to create a machine that achieves similar result.

Figure 1: The automated pour-over machine

1https://www.georgehowellcoffee.com/brew-guide/kalita-185/

2

https://www.georgehowellcoffee.com/brew-guide/kalita-185/

2 Materials Manufacturing

Due to the COVID-19 pandemic, my manufacturing and procurement abilities
were limited. I don’t have access to any rapid protyping machines, such 3D
printers, laser cutters. I also live on an island, so shipping currently takes several
weeks. Since I am back at my childhood home for the rest of the semester, I
chose Legos as the main prototyping material. Using Legos allows me to quickly
create and iterate my designs, while also providing sufficient structural support.
In addition, Legos have tight tolerances, so all mechanisms can interface and
function smoothly. Other electrical and mechanical components were sourced
from the provided lab kit and my personal collection of parts.

3 Electro-mechanical Details

3.1 Brewing Arm

The brewing arm, as shown in figure 2, consists of a simple four-bar linkage
attached to a continuous servo motor (Parallax futaba2) via a shaft coupler I
manufactured. When turned on, the mechanism moves the water tube in a
circular motion over the grounds, brewing the coffee. The speed of the arm can
be controlled a potentiometer on the breadboard. It is not meant to be changed
often, and is therefore located inside the machine.

Figure 2: The brewing arm mechanism

2https://www.parallax.com/product/parallax-continuous-rotation-servo/

3

https://www.parallax.com/product/parallax-continuous-rotation-servo/

3.2 Valve Control

A high torque, metal geared servo motor (HS-645MG3) was used to open and
close the water tank valve. The itself valve is a simple lever valve with a barb
fitting on the end, originally from an old bandsaw coolant system. Ideally, I
would use a solenoid valve to control the flow of water, but I did not have one
on hand and could not find one that would ship in time. Interfacing the servo
with the valve handle was the most difficult part of the design process. The
handle requires a decent amount of torque, has no obvious attachment points,
and is not parallel to valve housing, but instead 20 degrees off the plane, as
shown in figure 4. My solution was to glue a Lego piece to the handle then use
a strut with ball joints to connect them with another lever arm. The ball joints
on the strut to allow it connect the lever arm and the valve handle, even when
they are not planar. The lever is then rotated back forth using a gear-eqsue
connector, that then interfaces with the servo shaft via a coupler. The angular
values for opening and closing valve were determined experimentally.

Figure 3: The valve control mechanism for the brewing machine

Figure 4: A side view of the valve actuation mechanism

3https://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/

hs-645mg/product

4

https://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/hs-645mg/product
https://hitecrcd.com/products/servos/sport-servos/analog-sport-servos/hs-645mg/product

4 Circuit

The circuit for this machine is relatively straight forward. The servo motors
are connected to the microcontroller (ESP32) and controlled via PWM signals.
They are powered by the 5V power supply provided in the lab kit. A poten-
tiometer is then used to control the speed of the brewing arm, and push button
turns the brewing cycle on and off. A circuit diagram can be found in figure 5.

Figure 5: A circuit diagram for the auto-brewing machine

5 Finite State Machine

A diagram of the Finite State Machine (FSM) can be found in figure 6. The
machine has three main states: Brewing: Pouring, Brewing: Waiting, and
Not Brewing. Elapsed time is measured via the microcontroller timers and
the button presses are detected via an interrupt. For safety reasons, the tank
valve can never be opened while the machine is not brewing and automatically
closes on startup and finish.

Figure 6: An FSM diagram for the auto-brewing machine

5

6 Appendix

6.1 Future Modifications

As this design is a rough, functional prototype, several modifications can be
made to refine performance. For example, a solenoid valve should be used
instead of a lever valve to make opening and closing simpler. An X-Y gantry
system could also be used to make the pouring motion smoother and more
configurable. Such a system would also allow for a spiraling motion of the brew
tube, which is optimal for pour-over brewing. Lastly, a heating element could
be added to the water tank, to further automate the brewing process. However,
while these modification would refine performance, the machine still effectively
automate the George Howell pour over method.

6.2 Additional figures

Figure 7: A rearview of the pour-over machine

6

6.3 Code

#include <Servo.h>

//#include <ESP32Servo360.h>

#include <ESP32Servo.h>

#include <analogWrite.h>

//#include <tone.h>

#include <ESP32Tone.h>

#include <ESP32PWM.h>

hw_timer_t * timer = NULL;

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

Servo valve_servo;

Servo arm_servo;

//Input Pins

const int valve_servo_pin = 33;

const int button_pin = 27;

const int arm_servo_pin = 32;

const int pot_pin = A0;

//Loop and callback function variables

int val;

int speed_val = 90;

float last_press = 0;

volatile int valve_counter = 0;

volatile bool valve_state = false;

bool finished = false;

volatile bool brew_on = false;

volatile bool timer_active = false;

//Timer interrupt

void IRAM_ATTR pourControl() {

//Check if 165 seconds has elapsed

if (valve_counter == 11) {

//Close valve and stop brewing

valve_state = false;

brew_on = false;

valve_counter = 0;

}

//Start pouring if not pouring

if ((valve_counter % 2) == 0) {

7

valve_state = true;

valve_counter++;

} else {

//Stop pouring othwerise

valve_state = false;

valve_counter++;

}

}

//Button press interrupt

void isrButtonPress() {

//Debounce detection

if (millis() - last_press > 100) {

last_press = millis();

valve_state = false;

//If not brewing, start brewing

if (!brew_on) {

brew_on = true;

} else {

//stop brewing

brew_on = false;

}

}

}

void setup() {

Serial.begin(9600);

//Timer object creation

timer = timerBegin(0, 80, true);

timerAttachInterrupt(timer, &pourControl, true);

timerAlarmWrite(timer, 15000000, true);

//Button setup

pinMode(button_pin, INPUT_PULLUP);

attachInterrupt(button_pin, isrButtonPress, RISING);

//Servo setup

valve_servo.attach(valve_servo_pin, 500, 2400);

arm_servo.attach(arm_servo_pin, 500, 2400);

8

//Allocate timers for servos so they dont conflict with timer

↪→ interrupt

ESP32PWM::allocateTimer(1);

ESP32PWM::allocateTimer(2);

//Close the valve on startup

valve_servo.write(75);

//delay to allow valve to close

delay(5000);

}

void loop() {

//Read in state of pot

val = analogRead(pot_pin);

//57 is max speed, 97 is stopped

speed_val = map(val, 0, 4095, 50, 97);

//Prevent interrupts from interferring with turning timer on

↪→ and off

portENTER_CRITICAL(&timerMux);

if (brew_on) {

//Serial.println("Brewing");

//If brewing and timer not active, start timer

if (!timer_active) {

timerAlarmEnable(timer);

timer_active = true;

}

} else {

valve_state = false;

//Serial.println("Not Brewing");

//If not brewing and timer active, disable timer

if (timer_active) {

timerAlarmDisable(timer);

timer_active = false;

valve_counter = 0;

}

}

portEXIT_CRITICAL(&timerMux);

if (valve_state) {

//open valve and move arm

valve_servo.write(155);

9

arm_servo.write(speed_val);

Serial.println("Pouring");

} else {

//close valve and stop arm

valve_servo.write(75);

arm_servo.write(97);

Serial.println("Closed");

}

}

10

	Product Description
	Materials Manufacturing
	Electro-mechanical Details
	Brewing Arm
	Valve Control

	Circuit
	Finite State Machine
	Appendix
	Future Modifications
	Additional figures
	Code

