
Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

Rise And Shine

By Kevin Brown

Description of Product:

After moving from the Bay Area to San Diego, I no longer had direct sunlight glaring through
my bedroom window every morning. Being a heavy sleeper, I have found that I am much more
likely to wake up refreshed when awoken by light rather than sound. There are several products
on the market that can help solve this issue through the automation of one’s shades, however,
they are quite expensive and typically work off of a physical controller or a timer. With this
in mind, I wanted to automate my shades based on intensity of light outside. In addition to
saving money, I thought it would be a good opportunity to incorporate several concepts I have
been learning about in ME102B. I therefore designed my system to mount on the wall and
actuate the shade to a desired position depending on how light it is outside. In addition, the
system continuously monitors current draw to ensure that if the shade is stuck, the system will
shut down.

Figure 1: Bedroom window without (left) and with (right) automation device. The device is
adhered to the wall and the motor is connected to a 5V power supply.

Electromechanical Details:

Interfacing with existing Shade: The motor is mounted to the wall via a mount and
connects directly to a roller shade clutch (Gear for ball chains) utilizing set screws. This clutch
drives the ball chain that is wrapped around it. The clutch was sized based on required torque
to raise and lower the shade along with space constraints. The torque required to actuate the
shade was determined using a luggage scale and the radius of the shade tube. In addition, the
motor was sized based on the aforementioned requirements along with available power supplies.
The motor and motor clutch assembly can be seen in figure 2 below.

1



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

Figure 2: DC Motor to ball chain connection via roller shade clutch (left). Window sensor
sub-assembly (right)

Motor Mount and Window Sensors: The motor mount, allows for the attachment of the
motor to the wall along with space for the circuitry underneath. The cables for the window
sensing unit, the USB cable and the power cable are all accessible from the bottom of the
mount. The mount was placed so that the ball chain was pre-loaded and absent of slack to
ensure the ball chain would not jump across any of the teeth. The window sensing unit is
located away from the main mount and directly attached to the wall near the bottom of the
window. The window sensing unit can be seen in figure 2 above.

Circuit:

The largest challenge of the project was setting up the interface between several components
and ensuring the coded logic delivered the desired results when the aggregate system was built.
There were (6) main components: (1) Brushed DC Motor, (2) Motor Driver, (3) Current Sensor,
(4) Photo Resistor, (5) Ultrasonic sensor and (6) Potentiometer.

1. Brushed DC Motor: I purchased a CQRobot 270:1 Metal Gearmotor in-order to generate
the necessary torque with the power supply I had available (5V, 2A). The DC motor came
with a 64 count per revolution rotary encoder and all necessary wiring. The encoder was
also used to track linear distance traveled and use this as an upper limit value for when
the shade was in the retracting state.

2. DRV8833 Motor Driver: The DRV883 motor driver was provided in our lab kit. The
driver allowed for multi-directional rotation of the DC motor along with dynamic breaking
capabilities.

3. INA219 Breakout Board: I had an old INA219 from ME100 that was utilized . This
component allowed for the monitoring of current draw to the motor driver. With this
information a safety event was incorporated that would shut the motor off in the event

2

https://www.amazon.com/gp/product/B0731MD6JL/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1
https://www.pololu.com/product/2130
https://www.adafruit.com/product/904


Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

of rapidly increasing torque (in the case of a jam). This then required a manual reset of
the ESP32 to go back to the non-emergency off state.

4. Photo Resistor: I purchased Photo Cells from Fry’s electronics in-order to measure the
light intensity outside. The photo cells act as the sensing device that commands the
motors direction.

5. Ultrasonic Sensor: As with the INA219, I had an old HC-SR04 Ultrasonic Sonar Distance
Sensor from ME100 that I utilized for my extension limit. This sensor was utilized to
sense whether the shade at extended to the desired point and then shut the motor off.

6. Potentiometer: The Potentiometer was also part of our lab kit provided for ME102B. The
potentiometer was utilized to set the DC motor speed and ensure that shade actuation
could be achieved in a reasonable time.

Below a full circuit diagram can be seen. It should be noted that there are (3) resis-
tors, each of which has the value denoted in the diagram. My 5V, 2A power supply is
routed into the Vin pin on the INA219 and out to the DRV8822 motor driver, while the
microcontroller is powered by a USB attached to my computer. Prior to energizing the
circuit, a thorough review of the circuit was conducted to ensure the ESP32 was not in
anyway connected to the 5V power supply.

Figure 3: Rise And Shine Circuit Diagram

3

https://www.frys.com/product/8278806?site=sr:SEARCH:MAIN_RSLT_PG&requestComingFromSearch=true
https://www.adafruit.com/product/3942
https://www.adafruit.com/product/3942
https://www.digikey.com/en/products/detail/bourns-inc/PDB181-E420K-102B/3780675?s=N4IgTCBcDaIAoBEBCBGAHCgtAUQCxgAYBpTFAsJTAOQRAF0BfIA


Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

Finite State Machine

The system has several states it can be in depending on what events occur. These states and
events can be seen in the finite state diagram below. From the FSD, the photocell, Ultrasonic
sensor and current sensor required some calibration in-order to determine threshold values. The
photocell threshold was acquired empirically by measuring values at several times of day and
then determining when I wanted the shade to actuate, while the current and ultrasonic senors
were matched against a DMM and ruler. In addition to the FSD, a validation plot can be seen
below. It should be noted that the emergency off state was set to 1.1 Amps and the retract
limit to 60 inches, these are not plotted below but were validated separately.

Figure 4: Finite State Diagram

Figure 5: Motor RPM and Current draw over time from low light to high light conditions

4



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

Appendix I: Arduino Code

1 #include <Wire.h>
2 #include <ESP32Encoder.h>
3 #include <Adafruit_INA219.h>
4 ESP32Encoder encoder;
5 Adafruit_INA219 ina219;
6
7 // Constants and Variables
8
9 // Inputs

10 //#define interruptPin 21
11 #define Pot_Pin A0
12 #define Photo A10
13 //#define buzzer A12
14 #define trigPin 21
15 #define echoPin A8 // Pin 15
16
17 // Outputs
18 #define MPin_0 A1
19 #define MPin_1 A5
20
21 // PWM Specs
22 #define Freq 5000
23 #define Resolution 8
24 #define Led_Channel0 0
25 #define Led_Channel1 1
26
27 // Buzzer PWM Specs
28 #define Freqbuzz 1000
29 #define Resbuzz 8
30 #define Led_Channel2 2
31
32 // Feedback contral parameters
33 #define Kp 1.2
34 #define Ki 0.012
35 #define Feedback_Period 10000 // 10ms
36
37 // Thresholds
38 #define Debounce 200
39
40 // State Machine Variables

5



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

41 boolean state = 0;
42 volatile boolean interruptEvent = false;
43 bool printToggle = true;
44 bool emergency = false;
45
46 // Input Variables
47 int Potval = 0;
48 int duty = 0;
49 int tstep = 0; // t(k) variable
50 int photoValue = 0;
51
52 // Timer variables
53 volatile int buttonTimer = 0;
54 volatile int buttonTimer_prev = 0;
55
56 // PWM Duty Cycle Variables
57 int dutyCycle_state1 = 0;
58
59 // Encoder Variables
60 volatile int velGoal;
61 volatile int rpm;
62 volatile int count;
63 volatile int error;
64 volatile int errorSum;
65 volatile int Icont;
66 volatile int Pcont;
67
68 // INA219 Variables
69 float shuntvoltage = 0;
70 float busvoltage = 0;
71 float current_mA = 0;
72 float loadvoltage = 0;
73 float power_mW = 0;
74
75 // Ultrasonic Sensor Variables
76 float duration = 0;
77 int distlow = 0;
78 int disthigh = 0;
79 int dist = 0;
80
81 //Initializing timer with pointer
82 hw_timer_t * timer = NULL;

6



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

83 volatile SemaphoreHandle_t timerSemaphore;
84 portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;
85 volatile uint32_t lastIsrAt = 0;
86
87 // Encoder Interrupt
88 void IRAM_ATTR encodercount()
89 {
90 portENTER_CRITICAL_ISR(&timerMux);
91 count = encoder.getCount();
92 printToggle = true;
93 encoder.clearCount();
94 error = velGoal - rpm;
95
96 // PI Control Scheme
97 errorSum += error;
98 Pcont = Kp * error;
99 Icont = Kp * Ki * errorSum;

100 duty = Pcont + Icont;
101
102 // Direction
103 if ((photoValue < 500) && (distlow > 10))
104 {
105 dutyCycle_state1 = duty;
106 ledcWrite(Led_Channel0, dutyCycle_state1);
107 ledcWrite(Led_Channel1, 0);
108 }
109 else if ((photoValue < 500) && (distlow < 10))
110 {
111 ledcWrite(Led_Channel0, 0);
112 ledcWrite(Led_Channel1, 0);
113 disthigh = 0;
114 }
115
116 if ((photoValue > 500) && (disthigh < 60))
117 {
118 dutyCycle_state1 = duty;
119 ledcWrite(Led_Channel0, 0);
120 ledcWrite(Led_Channel1, dutyCycle_state1);
121 }
122 else if ((photoValue > 500) && (disthigh > 60))
123 {
124 ledcWrite(Led_Channel0, 0);

7



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

125 ledcWrite(Led_Channel1, 0);
126 }
127
128 // // Anit Wind-up
129 // if (duty > 255)
130 // {
131 // duty = 255;
132 // dutyCycle_state1 = duty;
133 // ledcWrite(Led_Channel0, dutyCycle_state1);
134 // ledcWrite(Led_Channel1, 0);
135 // }
136 // else if (duty < 70)
137 // {
138 // duty = 70;
139 // dutyCycle_state1 = duty;
140 // ledcWrite(Led_Channel0, dutyCycle_state1);
141 // ledcWrite(Led_Channel1, 0);
142 // }
143
144 portEXIT_CRITICAL_ISR(&timerMux);
145 xSemaphoreGiveFromISR(timerSemaphore, NULL);
146 }
147
148 // Initiallization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149 void setup()
150 {
151
152 // Pin Setups
153 // pinMode(interruptPin, INPUT_PULLUP);
154 pinMode(Photo, INPUT);
155 pinMode(trigPin, OUTPUT);
156 pinMode(echoPin, INPUT);
157 pinMode(Pot_Pin, INPUT);
158 pinMode(MPin_0, OUTPUT);
159 pinMode(MPin_1, OUTPUT);
160
161 // Interrupt Setup
162 //Button interrupt to turn motor on and off
163 // attachInterrupt(digitalPinToInterrupt(interruptPin), button,

RISING);
164
165 // Configure PWM

8



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

166 ledcSetup(Led_Channel0, Freq, Resolution);
167 ledcSetup(Led_Channel1, Freq, Resolution);
168 // Attach the channel to the GPIO to be controlled
169 ledcAttachPin(MPin_0, Led_Channel0);
170 ledcAttachPin(MPin_1, Led_Channel1);
171 // Initially write to PWM a duty cycle of 0
172 ledcWrite(Led_Channel0, 0);
173 ledcWrite(Led_Channel1, 0);
174
175 // Configure Buzzer PWM
176 // ledcSetup(Led_Channel2, Freqbuzz, Resbuzz);
177 // ledcAttachPin(buzzer, Led_Channel2);
178
179 // Configure Timer interrupt
180 // Timer setup for encodercount
181 timerSemaphore = xSemaphoreCreateBinary();
182 timer = timerBegin(0, 80, true); //timer 1, prescaler of 80,

counts up
183 timerAttachInterrupt(timer, &encodercount, true);
184 timerAlarmWrite(timer, Feedback_Period, true); //interrupt every

0.01 second (0.5 Hz)
185
186 // Encoder Setup
187 //ESP32Encoder::useInternalWeakPullResistors=DOWN;
188 // Enable the weak pull up resistors
189 ESP32Encoder::useInternalWeakPullResistors = UP;
190 // Attache pins for use as encoder pins
191 encoder.attachFullQuad(19, 18);
192 // set starting count value after attaching
193 encoder.setCount(0);
194 // clear the encoder’s raw count and set the tracked count to

zero
195 encoder.clearCount();
196 // get the endcoder count
197 encoder.getCount();
198
199 // INA219 Setup
200 uint32_t currentFrequency;
201
202 if (! ina219.begin()) {
203 Serial.println("Failed to find INA219 chip");
204 while (1) {

9



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

205 delay(10);
206 }
207 }
208 //To use a slightly lower 32V, 1A range (higher precision on amps

):
209 ina219.setCalibration_32V_1A();
210
211 Serial.begin(115200);
212 }
213
214 // Loop %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
215 void loop()
216 {
217
218 // Photo Resistor Readings
219 photoValue = analogRead(Photo);
220 digitalWrite(trigPin, LOW);
221 delay(10);
222 digitalWrite(trigPin, HIGH);
223 delay(10);
224 digitalWrite(trigPin, LOW);
225 duration = pulseIn(echoPin, HIGH);
226 distlow = (duration * .0343) / 2;
227
228
229 if (current_mA > 1100)
230 {
231 service2();
232 }
233 if ((current_mA < 1100))
234 {
235 service1();
236
237 switch (printToggle)
238 {
239 case true:
240 shuntvoltage = ina219.getShuntVoltage_mV();
241 busvoltage = ina219.getBusVoltage_V();
242 current_mA = ina219.getCurrent_mA();
243 power_mW = ina219.getPower_mW();
244 loadvoltage = busvoltage + (shuntvoltage / 1000);
245 tstep = (tstep + 1); // t(k) counter

10



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

246 rpm = 0.0003636 * abs(count) * 6000 / (2 * PI); // Actual
RPM from encoder

247 dist = 0.11*abs(count);
248 disthigh = disthigh+dist;
249 // Serial Prints when motor is on
250 Serial.print("Light: "); Serial.println(photoValue);
251 //Serial.print("Time: "); Serial.println(tstep); // Time

step
252 Serial.print("RPM: "); Serial.println(rpm); // Encoder

RPM
253 Serial.print("Dist: "); Serial.println(dist);
254 Serial.print("Distance: "); Serial.println(distlow);
255 Serial.print("Distance High: "); Serial.println(disthigh);
256 Serial.print("VelGoal: "); Serial.println(velGoal); //

Goal Velocity
257 //Serial.print("Bus Voltage: "); Serial.print(busvoltage)

; Serial.println(" V");
258 //Serial.print("Shunt Voltage: "); Serial.print(

shuntvoltage); Serial.println(" mV");
259 //Serial.print("Load Voltage: "); Serial.print(loadvoltage

); Serial.println(" V");
260 Serial.print("Current: "); Serial.print(current_mA);

Serial.println(" mA");
261 Serial.print(’\n’);
262 delay(1000);
263 printToggle = false;
264 break;
265
266 default:
267 break;
268 }
269 // Pot readings
270 Potval = analogRead(Pot_Pin);
271 // Maps analog reading to min ---> max RPM
272 velGoal = map(Potval, 0, 4095, 0, 15);
273 }
274
275 }
276
277
278 // Service Routines %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
279 void service0()

11



Kevin Brown
3033592579 Final Project

ME 102B
12/08/20

280 {
281 // Turn off motor
282 timerAlarmDisable(timer);
283 ledcWrite(Led_Channel0, 0);
284 ledcWrite(Led_Channel1, 0);
285 }
286
287 void service1()
288 {
289 // Turn on motor
290 timerAlarmEnable(timer); //starts alarm
291 }
292
293 void service2()
294 {
295 timerAlarmDisable(timer);
296 ledcWrite(Led_Channel0, 0);
297 ledcWrite(Led_Channel1, 0);
298 emergency = true;
299 }

12


