
ME102B Final Project: Gyroscope Controlled RC Car
Yingying Chen

Due: December 8th, 2020

Product Description
As Christmas approaches, a popular gift for small children is an RC car. This year I wanted to surprise my
younger cousin with a really unique RC car that she and I could play with together! One of her favorite cars
is the classic Volkswagen bus, so I decided to make a RC Car with some recycled parts from an old Arduino
project. This way she and I can improve it together since she also curious about robotics. Instead of the
original joystick control, I thought a gyroscope control would be more unique and interesting to work with.

Figure 1: My RC Volkswagen bus (right) with its gyroscope controller (left)

For video demonstration of this project, visit https://youtu.be/7JwaCxzMmRQ

Electromechanical Details

Building the Car
The components of the car are from the two wheel drive robot car kit for Arduino projects. The kit contains
the following components.

• 2x DC Motors

• 2x Tire Tread Wheels

• 1x Caster Wheel

• 1x Acrylic Chassis

1

https://youtu.be/7JwaCxzMmRQ

ME102B Yingying Chen Final Project

• 2x Mounting Brackets (screws and nuts included)
In addition to the kit, a breadboard is mounted to the chassis with Velcro. To build this kit, a Phillips head
screwdriver is required. After assembly and some testing, I found that the caster wheel was impairing
the movement of the car and not sufficient as a third supporting wheel due to the spinning of the wheel.
Therefore, I taped the caster wheel in place which significantly improved the movement of the car. For the

(a) Microcontroller access, Microcontroller to
battery connection.

(b) Annotated picture of sensors and circuit for
the controller and car

Figure 2

cardboard housing, it sits on top on the chassis and held in place with Velcro. This allows the housing to be
easily removable so that the 9V and portable battery charger can be recharged. In addition, there are two
holes in the back of the car for access to the microcontroller and for the microcontroller to connect to the
portable battery.

For future projects, the robot car kit also includes an optical encoder which could be used for feedback
control implementation.

Controller Setup
For the prototype, the controller consists of a microcontroller and IMU on a breadboard. The breadboard is
also fixed to a piece of laser cut slab of wood for better grip. For future iterations, the controller would be
smaller with a and contained inside a ergonomic 3D printer container.

Circuit
The main components of the circuits are (1) two ESP32 feathers (2) two DC motors (3) inertial measurement
unit (IMU) (4) dual motor driver carrier.

1. Two ESP32 Feathers: In addition to the microkit microcontroller, another microcontroller(esp32 feather,
$20) is also used in this project for wireless control through WiFi. The controller microcontroller or the
”server” microcontroller, will create its own WiFi server for the car microcontroller or ”client” microcon-
troller to grab data. The controller microcontroller was powered by the included 3.7V LiPo battery, and
the car microcontroller was powered by an old 5V portable charger.

2. Two DC Motors: Both DC motors operate from 4.5-9V. In the circuit, it is powered by a rechargeable 9V
battery ($6). This battery is connected to the motor driver through a temporary switch for prototyping
purposes. They are controlled through a motor driver to allow the car to have bidirectional motion.

2

https://learn.adafruit.com/adafruit-huzzah32-esp32-feather
https://www.amazon.com/gp/product/B078HP76PG/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B078HP76PG/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1

ME102B Yingying Chen Final Project

3. IMU: The inertial measurement sensor (MPU9250/6500 9-Axis 9 DOF 16 Bit Gyroscope Acceleration
Magnetic Sensor IIC/SPI, in microkit) is a chip that contains an accelerometer, gyroscope, and mag-
netometer. It is part of the controller side circuit and powered by the 3.3V from the microcontroller. It
will evaluate the angle at which the user is holding the controller. For implementation in Arduino, this
library by hideakitai is used to retrieve the pitch and roll of the controller set up.

Figure 3: Diagram of IMU orientation. Only the pitch and roll of the IMU is used for this project.

4. Motor Driver: The dual motor driver carrier (DRV8833 Dual Motor Driver Carrier, in microkit) is capable
of controlling 2 high powered actuators, such as these DC motors, with low power data signals. This
motor driver uses an H-bridge to control the DC motors in two directions by switching the polarity of
the connected 9V battery.

The total for the parts that were purchased for this project were $26 since the robot car kit, IMU, motor driver,
and portable charger were from previous projects or from the ME102B microkit.

(a) Controller circuit diagram (b) Car circuit diagram

Figure 4

3

http://www.hiletgo.com/ProductDetail/1953399.html
http://www.hiletgo.com/ProductDetail/1953399.html
https://github.com/hideakitai/MPU9250
https://github.com/hideakitai/MPU9250
https://www.pololu.com/product/2130

ME102B Yingying Chen Final Project

Finite State Machine and Arduino Code
Note that hysteresis is implemented as the IMU data is converted to PWM values. This is to prevent any
noise and sensor inaccuracies to unnecessarily influence the PWM values of the motor. The hysteresis is
not only applied to the back and forth or ”Y” values but also the turning values or ”X” values of the controller.

Figure 5: FSM of the system. The blue lines affect both motors identically, green lines affect individual
motors for turning motion. Pitch or back and forth motion is capped at a value of 35/-35. Roll or turning
motion is capped at 20/-20 so that any numbers not within that range cannot push the motors to full PWM
values and stall the motor.

Arduino Code For the Arduino code, the client (car) asks for an update from the server (controller) every
100 ms. In reality, this delay is almost undetectable and the controller to car response is immediate to the
user.

4

ME102B Yingying Chen Final Project

Appendix

Controller Code

1 // Import required libraries
2 #include "WiFi.h"
3 #include "ESPAsyncWebServer.h"
4
5 #include "MPU9250.h"
6 MPU9250 mpu;
7
8
9 int x;

10 int y;
11 const int upLim = 35;
12 const int loLim = -35;
13
14 // Set your access point network credentials
15 const char* ssid = "ESP32-Access-Point";
16 const char* password = "123456789";
17
18 // Create AsyncWebServer object on port 80
19 AsyncWebServer server(80);
20
21 String readIMU_X() {
22 return String(x);
23 }
24
25 String readIMU_Y() {
26 return String(y);
27 }
28
29 void setup() {
30 // Serial port for debugging purposes
31 Serial.begin(9600);
32 Wire.begin();
33 delay(1000);
34 Serial.println();
35
36 // Setting the ESP as an access point
37 Serial.print("Setting AP (Access Point)");
38 // Remove the password parameter, if you want the AP (Access Point) to be

open
39 WiFi.softAP(ssid, password);
40
41 IPAddress IP = WiFi.softAPIP();
42 Serial.print("AP IP address: ");
43 Serial.println(IP);
44
45 server.on("/imuX", HTTP_GET, [](AsyncWebServerRequest * request) {
46 request->send_P(200, "text/plain", readIMU_X().c_str());
47 });
48
49 server.on("/imuY", HTTP_GET, [](AsyncWebServerRequest * request) {

5

ME102B Yingying Chen Final Project

50 request->send_P(200, "text/plain", readIMU_Y().c_str());
51 });
52
53 mpu.setup(0x68);
54 mpu.calibrateAccelGyro();
55
56 // Start server
57 server.begin();
58 }
59
60 void loop() {
61 if (mpu.update()) {
62 x = mpu.getRoll();
63 y = mpu.getPitch();
64 }
65 x = limitRange(x);
66 y = limitRange(y);
67 }
68
69 int limitRange(int dir) {
70 if (dir >= upLim) {
71 dir = upLim;
72 } else if (dir <= loLim) {
73 dir = loLim;
74 } else {
75 dir = dir;
76 }
77 return dir;
78 }

Car Code

1 #include "WiFi.h"
2 #include "HTTPClient.h"
3
4 const char* ssid = "ESP32-Access-Point";
5 const char* password = "123456789";
6
7 //Your IP address or domain name with URL path
8 const char* serverNameX = "http://192.168.4.1/imuX";
9 const char* serverNameY = "http://192.168.4.1/imuY";

10
11 #define motorAPin1 14 //direction 1 for motor A (right)
12 #define motorAPin2 15 //direction 2 for motor A (right)
13 #define motorBPin1 32 //direction 1 for motor B (left)
14 #define motorBPin2 33 //direction 2 for motor B (left)
15
16 String read_x;
17 String read_y;
18
19 int pwm_x_L;
20 int pwm_x_R;
21 int pwm_y;

6

ME102B Yingying Chen Final Project

22 int X_val;
23 int Y_val;
24
25 int tot_pwm_L;
26 int tot_pwm_R;
27
28
29 // setting PWM properties
30 const int freq = 20000;
31 const int ledChannel1 = 0; //direction 1 for motor A (right)
32 const int ledChannel2 = 1; //direction 2 for motor A (right)
33 const int ledChannel3 = 2; //direction 1 for motor B (left)
34 const int ledChannel4 = 3; //direction 2 for motor B (left)
35
36 const int resolution = 8; //corresponds to dutycyle of 0-255
37
38 unsigned long previousMillis = 0;
39 const long interval = 100;
40
41 void setup() {
42 //Start serial
43 Serial.begin(9600);
44
45 // configure MOTOR A PWM functionalitites
46 ledcSetup(ledChannel1, freq, resolution);
47 ledcSetup(ledChannel2, freq, resolution);
48
49 // configure MOTOR B PWM functionalitites
50 ledcSetup(ledChannel3, freq, resolution);
51 ledcSetup(ledChannel4, freq, resolution);
52
53 // attach the channels to the GPIOs to be controlled (A)
54 ledcAttachPin(motorAPin1, ledChannel1);
55 ledcAttachPin(motorAPin2, ledChannel2);
56
57 // attach the channel to the GPIOs to be controlled (B)
58 ledcAttachPin(motorBPin1, ledChannel3);
59 ledcAttachPin(motorBPin2, ledChannel4);
60
61 WiFi.begin(ssid, password);
62 Serial.println("Connecting");
63 while (WiFi.status() != WL_CONNECTED) {
64 delay(500);
65 Serial.print(".");
66 }
67 Serial.println("");
68 Serial.print("Connected to WiFi network with IP Address: ");
69 Serial.println(WiFi.localIP());
70
71 }
72
73 void loop() {
74 unsigned long currentMillis = millis();
75

7

ME102B Yingying Chen Final Project

76 if (currentMillis - previousMillis >= interval) {
77 // Check WiFi connection status
78 if (WiFi.status() == WL_CONNECTED) {
79 read_x = httpGETRequest(serverNameX);
80 read_y = httpGETRequest(serverNameY);
81 //Serial.println("X: " + read_x + " Y: " + read_y);
82
83 // save the last HTTP GET Request
84 previousMillis = currentMillis;
85 }
86 else {
87 Serial.println("WiFi Disconnected");
88 }
89 }
90
91 X_val = read_x.toInt();
92 Y_val = read_y.toInt();
93
94 motorDrive();
95 //Serial.print("left: ");
96 //Serial.print(tot_pwm_L);
97 //Serial.print(" right: ");
98 //Serial.println(tot_pwm_R);
99

100 }
101
102 /* SERVICE ROUTINE: motorDrive()
103 Decription: Function to drive the motor forward and backward (drive both

motors at same PWM)
104 */
105 void motorDrive() {
106 /*Control the PWM signal for each motor only if the angle of the
107 controller is higher or lower than -4*/
108 motorTurn();
109
110 if (Y_val > 4) {
111 pwm_y = map(Y_val, 0, 35, 100, 230); //Map the angle to a PWM signal from

0 to 200
112
113 tot_pwm_L = pwm_y + pwm_x_L;
114 tot_pwm_R = pwm_y + pwm_x_R;
115
116 // tot_pwm_L = pwm_y;
117 // tot_pwm_R = pwm_y;
118
119 constrain(tot_pwm_L, 0, 255);
120 constrain(tot_pwm_R, 0, 255);
121
122 ledcWrite(ledChannel1, 0);
123 ledcWrite(ledChannel2, tot_pwm_R);
124
125 ledcWrite(ledChannel3, 0);
126 ledcWrite(ledChannel4, tot_pwm_L);
127 }

8

ME102B Yingying Chen Final Project

128 //We do the same for all 4 PWM pins
129 if (Y_val < -4) {
130 pwm_y = map(Y_val, 0, -35, 100, 230);
131
132 tot_pwm_L = pwm_y + pwm_x_L;
133 tot_pwm_R = pwm_y + pwm_x_R;
134
135 // tot_pwm_L = pwm_y;
136 // tot_pwm_R = pwm_y;
137
138 constrain(tot_pwm_L, 0, 255);
139 constrain(tot_pwm_R, 0, 255);
140
141 ledcWrite(ledChannel1, tot_pwm_R);
142 ledcWrite(ledChannel2, 0);
143
144 ledcWrite(ledChannel3, tot_pwm_L);
145 ledcWrite(ledChannel4, 0);
146 }
147
148 if (Y_val > -4 && Y_val < 4) {
149 ledcWrite(ledChannel1, 0);
150 ledcWrite(ledChannel2, 0);
151
152 ledcWrite(ledChannel3, 0);
153 ledcWrite(ledChannel4, 0);
154 }
155 }
156
157
158 /* SERVICE ROUTINE: motorTurn()
159 Decription: Function to drive the motor to turn
160 X_val positive = left
161 X_val negative = right
162 */
163 void motorTurn() {
164 if (X_val > 10) {
165 pwm_x_L = map(X_val, 10, 35, 0, -20);
166 pwm_x_R = map(X_val, 10, 35, 0, 20);
167 }
168
169 if (X_val < -10) {
170 pwm_x_L = map(X_val, -10, -35, 0, 20);
171 pwm_x_R = map(X_val, -10, -35, 0, -20);
172 }
173
174 if (X_val > -10 && X_val < 10) {
175 pwm_x_L = 0;
176 pwm_x_R = 0;
177 }
178 }
179
180 String httpGETRequest(const char* serverName) {
181 HTTPClient http;

9

ME102B Yingying Chen Final Project

182
183 // Your IP address with path or Domain name with URL path
184 http.begin(serverName);
185
186 // Send HTTP POST request
187 int httpResponseCode = http.GET();
188
189 String payload = "--";
190
191 if (httpResponseCode > 0) {
192 //Serial.print("HTTP Response code: ");
193 //Serial.println(httpResponseCode);
194 payload = http.getString();
195 }
196 else {
197 Serial.print("Error code: ");
198 Serial.println(httpResponseCode);
199 }
200 // Free resources
201 http.end();
202
203 return payload;
204 }

10

