
Bubbles the Clown Animatronic
By Katelyn Gerhardt

1 Description of product:
Since childhood my family has always gone above and beyond for Halloween. From fake blood splattered
on the front of the house to life sized clowns sitting on the front lawn, my house was known for putting on
an extravagant and gory scene. This has always made me extremely interested in the entertainment field
of animatronics. Thus, for my project I have taken an old life sized clown Halloween prop and turned it
into Bubbles, the Clown Animatronic. This idea was chosen purely out of curiosity and getting a feel for
the animatronic world with the intention of seeking a potential career in the animatronics world for major
theme parks which has been a dream since childhood.

Figure 1: ​Before and after of Bubbles the Clown

2 Demonstration
https://drive.google.com/file/d/1wq3goDjkOHvRbNX7bdmdzc0dBOQO9pZJ/view?usp=sharing
https://youtu.be/dSgdo8eXig4

https://drive.google.com/file/d/1wq3goDjkOHvRbNX7bdmdzc0dBOQO9pZJ/view?usp=sharing
https://youtu.be/dSgdo8eXig4

3 Electromechanical Details:

3.1 Life Size Clown
Upon starting the project, the life sized clown was entirely made of styrofoam with no prior electronics. I
started from complete scratch and emptied out the entire head to fit in the electronics. After that, I used
foam from a can to patch up the holes made from the assembly process. Finally, I used a dremel to shave
down the excess foam to make him look more realistic.

3.2 Controls
Movement of Bubbles is controlled completely by a PlayStation controller using the PS4-ESP32 [1] and
ESP32Servo [2] libraries. As pictured below in ​Figure 2​ the controls are as follows: the left joystick
controls the X and Y movement of the eyes, the right joystick controls the Y movement of the head, the
left trigger controls the blinking of the eyes, and the right trigger controls the movement of the jaw. Each
trigger of the controller corresponds to a PWM signal ranging from 0 to 255, which in turn maps to the
degrees of the servo arm from 0° to 180°. Similarly, the joysticks correspond to analog signals ranging
from -127 to 128 which in turn maps to the degrees of the servo arm from 0° to 180°.
In order to get my microcontroller to communicate with the PS4 controller, I had to find the controller’s
MAC address which I was able to do using the program “SixAxis Pair Tool” that gave me the controllers
MAC address.

Figure 2:​ PlayStation controls and events

3.3 Head & Shoulders
Originally, the head was mounted on a large spring attached to his torso. I
completely removed the spring and replaced it with a ball and socket joint so
the head can freely move. Next, I cut holes out of his back to fit two 20KG
servo motors. The servos were then attached to a long rod with two servo
ball-links on either side. This rod connects the servo motors to the side of his
head to allow movement in the Y direction.

3.4 Jaw
The jaw is controlled by a SG90 Micro Servo
attached to a long stiff wire through his neck to the
back of his jaw. Originally, the clown’s jaw was
attached by small springs on either side which I
left to allow for easy movement by the servo. The
servo was then hot glued down to the bottom of
his neck. A hole was extruded through his throat
for a long stiff wire to connect to his jaw.

3.5 Eyes
The eye mechanism was designed by Nilhem Electronics [3] and 3D printed at Jacobs Makerspace. This
implementation was the most difficult and time consuming. The components of the eyes can be seen in
the appendix. The eyes are controlled by six SG90 Micro Servos: two for the X direction, two for the Y
direction and two for each eyelid. I had slightly tweaked Nilhem’s design and used stiff wire to connect the
servo horns to the eye mechanism. The eye mechanism is placed into the actual eye which sits inside the
eyelids.

4 Circuit Diagram and Finite State Machine Diagram

5 Description of all Parts
In addition to the parts used from the MicroKit, the following parts were bought (and some bought by my
dad) for a total of 〜$100 out of pocket.

● 20KG Digital Servo​ x2 (〜$16.99 each) Used for head movement.
● SG90 Micro Servo Motor​ x6 (〜$18.59 for 10 pcs) Used for jaw and eye movement. Had to buy

two orders for a total of 20 pcs because motors broke unexpectedly.
● Universal Ball and Socket Joint ​x1 (〜$7.99) Used for universal movement of the head.
● Ball Joint Link​ x4 (〜$20 for 5 from local hobby store) Used for smoother movement of servo

joints.
● Threaded Rods​ x2 (〜$?? From home depot) Used for attaching the servos in the shoulder to the

head. Not sure of the exact price, my dad picked it up for me and forgot the price.
● Stiff Wire​ x1 (〜$?? From home depot) Used to attach the servo to the jaw running through the

neck. Also bought my dad from Home depot and forgot the price.
● M3 Screws​ x40(〜$12 from local hobby store) Used to attach 3D printed parts
● PLA​ 170g (〜$20 including shipping from Jacobs Maker Space) Used for printing eye

components through the Jacobs Support Program.
● Expanding Foam​ (〜$?? From home depot) Used for filling the holes made from the assembly

process. Also bought my dad from Home depot and forgot the price.

References

1. https://github.com/aed3/PS4-esp32
2. https://www.arduinolibraries.info/libraries/esp32-servo
3. Cogley, Will. “Compact and Robust 3D Printed Animatronic Eye Mechanism.” ​Nilheim

Mechatronics​,
www.nilheim.co.uk/latest-projects-and-blog/compact-and-robust-3d-printed-animatronic-eye-mec
hanism

https://www.amazon.com/gp/product/B076CNKQX4/ref=ppx_yo_dt_b_asin_title_o03_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07L2SF3R4/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B012FTXOW4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&psc=1
https://www.amazon.com/dp/B07GFMBTJW/ref=as_li_ss_tl?_encoding=UTF8&psc=1&linkCode=sl1&tag=nilheim-20&linkId=3953a0a91364e7e8f433f9760be30f97
https://www.amazon.com/Stainless-Threaded-Thread-Length-Threads/dp/B00G3PEUD4/ref=sr_1_2?dchild=1&keywords=threaded+rod&qid=1606871766&sr=8-2
https://www.amazon.com/Carbon-Finish-Specifications-Diameter-Precision/dp/B0026GISQE/ref=sr_1_2?crid=RPWNY2KDU8RV&dchild=1&keywords=piano+wire&qid=1606871879&sprefix=piano+wire%2Caps%2C264&sr=8-2
https://www.amazon.com/Sutemribor-320Pcs-Stainless-Button-Assortment/dp/B07CYNKLT2/ref=sr_1_4?crid=1GPWMSPSN62QV&dchild=1&keywords=m3+screws&qid=1606872151&sprefix=m3+screws%2Caps%2C512&sr=8-4
https://store.jacobshall.org/products/ultimaker-filament-white-pla-priced-per-gram
https://www.amazon.com/Loctite-TITEFOAM-Insulating-Sealant-1988753/dp/B01N21KQ4I/ref=sr_1_3?dchild=1&keywords=expanding+foam&qid=1607304203&sr=8-3
https://github.com/aed3/PS4-esp32
https://www.arduinolibraries.info/libraries/esp32-servo
http://www.nilheim.co.uk/latest-projects-and-blog/compact-and-robust-3d-printed-animatronic-eye-mechanism
http://www.nilheim.co.uk/latest-projects-and-blog/compact-and-robust-3d-printed-animatronic-eye-mechanism

Appendix

12/6/2020 Arduino Code

1/4

Arduino Code
Katelyn Gerhardt

1 #include <ESP32Servo.h>
2 #include <PS4Controller.h>
3 #include <Wire.h>
4
5
6 // Shoulder and Jaw Servos
7 Servo rightShoulder; //controlled by right joystick
8 Servo leftShoulder; //controlled by right joystick
9 Servo jaw; //controlled by R2
10 int rightShoulderPIN = 23;
11 int leftShoulderPIN = 22;
12 int jawPIN = 14;
13 int shoulderDesY;
14 int shoulderDesX;
15 int shoulderCurrY;
16 int shoulderCurrX;
17 int R2pos;
18
19 // Eye Servos
20 Servo eyeX; //controlled by left joystick X
21 Servo eyeYleft; //controlled by left joystick Y
22 Servo eyeYright;
23 Servo eyeLids; //controlled by L2
24 int eyeXPIN = 21;
25 int eyeYPINright = 17;
26 int eyeYPINleft = 16;
27 int eyeLidsPIN = 19;
28 int L2pos;
29 int eyeDesX;
30 int eyeDesYright;
31 int eyeDesYleft;
32 int delayy = 1000;
33
34 #define SERVO_SPEED 45 //higher value, slower the speed
35
36 static unsigned long servo_time;
37
38 void eyeloop() {
39 while (!PS4.data.button.circle) {
40
41 positionA();
42 blinkEyes();
43
44
45 positionB();
46 positionC();
47 blinkEyes();
48 positionA();
49
50 positionD();
51 positionE();
52 positionA();
53 blinkEyes();
54
55 positionF();
56 positionG();
57 blinkEyes();

12/6/2020 Arduino Code

2/4

58
59 }
60 }
61
62 void positionA() {
63 eyeYright.write(101);
64 eyeYleft.write(102);
65 eyeX.write(88);
66 delay(delayy);
67 }
68
69 void positionB() {
70 eyeYright.write(101);
71 eyeYleft.write(102);
72 eyeX.write(88);
73 delay(delayy);
74 }
75
76 void positionC() {
77 eyeYright.write(100);
78 eyeYleft.write(103);
79 eyeX.write(149);
80 delay(delayy);
81 }
82
83 void positionD() {
84 eyeYright.write(108);
85 eyeYleft.write(95);
86 eyeX.write(64);
87 delay(delayy);
88 }
89
90 void positionE() {
91 eyeYright.write(119);
92 eyeYleft.write(84);
93 eyeX.write(124);
94 delay(delayy);
95 }
96
97 void positionF() {
98 eyeYright.write(90);
99 eyeYleft.write(114);

100 eyeX.write(66);
101 delay(delayy);
102 }
103
104 void positionG() {
105 eyeYright.write(90);
106 eyeYleft.write(113);
107 eyeX.write(140);
108 delay(delayy);
109 }
110
111 void blinkEyes() {
112 eyeLids.write(10);
113 eyeLids.write(90);
114 eyeLids.write(10);
115 }
116
117 void setup() {
118
119 // Servo Set up
120 //Jaw
121 jaw.setPeriodHertz(50);
122 jaw.attach(jawPIN);

12/6/2020 Arduino Code

3/4

123
124 //Shoulders
125 rightShoulder.setPeriodHertz(50);
126 rightShoulder.attach(rightShoulderPIN);
127 leftShoulder.setPeriodHertz(50);
128 leftShoulder.attach(leftShoulderPIN);
129
130 // Servos for Eyes
131 eyeX.setPeriodHertz(50);
132 eyeX.attach(eyeXPIN);
133 eyeYleft.setPeriodHertz(50);
134 eyeYleft.attach(eyeYPINleft);
135 eyeYright.setPeriodHertz(50);
136 eyeYright.attach(eyeYPINright);
137 eyeLids.setPeriodHertz(50);
138 eyeLids.attach(eyeLidsPIN);
139
140 // PS4 Controller set up
141 Serial.begin(9600);
142 PS4.begin("40:49:0f:d5:b2:80");
143 Serial.println("Ready.");
144 if (PS4.isConnected()) {
145 Serial.println("Connected.");
146 }
147 }
148
149 void loop() {//MAIN LOOP%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 if (PS4.isConnected()) {
151
152 R2pos = map(PS4.data.analog.button.r2, 0, 255, 180, 0);
153 shoulderDesY = map(PS4.data.analog.stick.ry, -128, 127, 180, 0);
154 shoulderDesX = map(PS4.data.analog.stick.rx, -128, 120, 180, 0);
155 shoulderCurrX = rightShoulder.read();
156 shoulderCurrY = rightShoulder.read();
157 int shoulderCurrYright = rightShoulder.read();
158 int shoulderCurrYleft = leftShoulder.read();
159
160 eyeDesX = map(PS4.data.analog.stick.lx, -128, 127, 150, 60);
161 eyeDesYright = map(PS4.data.analog.stick.ly, -128, 127, 120, 85);
162 eyeDesYleft = map(PS4.data.analog.stick.ly, -128, 127, 85, 120);
163 L2pos = map(PS4.data.analog.button.l2, 0, 255, 0, 90);
164
165 if ((millis() - servo_time) >= SERVO_SPEED) {
166 servo_time = millis();
167
168 //head control for right joystick in X %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
169 if (shoulderDesX != shoulderCurrX) {
170 if (shoulderDesX > shoulderCurrX) {
171 rightShoulder.write(rightShoulder.read() + 3);//++
172 leftShoulder.write(leftShoulder.read() + 3);
173 }
174 else if (shoulderDesX < shoulderCurrX) {
175 rightShoulder.write(rightShoulder.read() - 1);//--
176 leftShoulder.write(leftShoulder.read() - 1);
177 }
178 }
179
180 // eye control for left joystick
181 if (PS4.event.analog_move.stick.ly) {
182 eyeYleft.write(eyeDesYleft);
183 eyeYright.write(eyeDesYright);
184 }
185 if (PS4.event.analog_move.stick.lx) {
186 eyeX.write(eyeDesX);
187 }

12/6/2020 Arduino Code

4/4

188
189 // blink controlled by L2
190 if (PS4.data.button.l2) {
191 eyeLids.write(L2pos);
192 }
193
194 // jaw controlled by R2
195 if (PS4.data.button.r2) {
196 jaw.write(R2pos);
197 if (PS4.data.analog.button.r2 <= 20) {
198 jaw.write(150);
199 }
200 }
201
202 if (PS4.data.button.triangle) {
203 eyeloop();
204 }
205 }
206 }
207 }

