
ME 102B -- Fall 2020
Final Project

Quarantine Buddy
By Srishti Goswamy

Description of the Product:

For our final Mechatronics Design project, we were asked to create a product for our own use. While
thinking about what would be most useful to me currently, I couldn’t help but consider that we are
currently in a global pandemic and adjusting to a new lifestyle of social distancing. I, like many others,
moved back home with my family when the pandemic started, and at times want nothing more than to talk
to a friend without risking either of our safety. This led me to design a Quarantine Buddy, a robot that
lights up and waves at different speeds. It also connects to an Android chatbot application to help combat
social distancing loneliness. From a technical standpoint, I was interested in applying mechatronics
concepts from class and used the ESP32 microcontroller, potentiometer, DRV8833 dual motor driver
carrier, resistors, and LEDs from the microkit. I also applied Option 1 “I’m interested in [technology X]”
by including a software component in the form of an Android app. Please watch the attached video for a
video demonstration of the product.

Figure 1: Quarantine Buddy’s hardware (left) and software (right) components.

Electromechanical details:

Interfacing between the circuit and cardboard prototype: The body of the product featured a cardboard
figure attached to a circuit and breadboard on a wooden backing. The breadboard is connected to the
cardboard figure at two locations: the eyes and waving arm. The eyes have two holes for the LEDs to fit

snugly, and the arm has a shoulder portion that fits the DC motor body and a separate forearm portion that
interfaces with the shaft. This allows the shaft to rotate freely to give the appearance of waving.

Figure 2: (Left and middle) Interface between the DC motor and cardboard figure. (Right) Circuit behind the

cardboard figure, which is described in more detail in the following section.

Circuit:

The circuit involved the following parts from the microkit: an ESP32 microcontroller, linear
potentiometer, DRV8833 dual motor driver carrier, Pololu DC gearmotor, two LEDs, and two 10k Ohm
resistors. The LEDs only needed to turn on and off, so they were implemented using a simple circuit. The
3.3 V voltage from the ESP32 traveled from GPIO output-enabled pins 32 and 14, through the 10k Ohm
resistors to prevent damage to the LEDs, and finally through the LEDs which allowed them to emit light
before returning to ground. The LEDs were powered using the Arduino digitalWrite() function with a
HIGH value argument.

However, the circuit and Arduino code to implement the arm waving functionality was more complex.
The code utilized pulse-width modulation (PWM), a method which discretizes an electrical signal and is
particularly useful for running inertial loads like motors that are unaffected by quick on-and-off
switching. Using ledcSetup(), I chose the PWM channels and configured the frequency to 5000 and the
resolution to 8 bits. I attached the necessary GPIO pins, A1 and 13, to their respective PWM channels
using ledcAttachPin(). In the loop() function, I read the duty cycle from the potentiometer and mapped it
from 4095 to 255 (2^8 - 1). Then, I used ledcWrite to set the first PWM channel to the duty cycle and the
second channel to 0 for 400 milliseconds, and then set the first to 0 and the second to the duty cycle for
another 400 milliseconds, in order to switch back and forth between clockwise and counterclockwise
motion to create the effect of a waving arm.

In terms of the circuit, the arm waving functionality used a potentiometer that connected to the 3.3 V
ESP32 voltage source, ground, and an input-enabled pin. I connected the microcontroller to Ain1 and
Ain2 from the motor driver to receive duty cycle information from the potentiometer, and then connected
Aout1 and Aout2 from the motor driver to the DC motor to power the motor while enabling bidirectional

motion. The motor driver was also connected to ground and the 3.3 V voltage source from the
microcontroller.

Figure 3: Circuit diagram for the product. I chose to wire the diagram exactly like the actual product for conceptual

clarity, which is why some of the wires are crossed or slightly messy in the diagram.

Finite state machine:

Neither the LED functionality nor the Android applications were finite state machines, so they are omitted
here, and I instead focus on the arm-waving mechanism. The FSM had two states, one where the motor
moves clockwise and one where it moves counterclockwise. The Arduino code alternates between these
two states every 400 milliseconds, so each 400 millisecond period that passes causes a change in motor
direction and change of state. Additionally, I used a guard condition to include that changing
potentiometer position changes motor speed, although it does not alter the FSM state. This data is also
displayed in a bar graph, which shows the motor alternating between clockwise and counterclockwise
motion every 400 milliseconds.

Figure 4: (Left) Finite state diagram depicting arm-waving mechanism. (Right) Graph depicting motor state vs time.

Android application:

The accompanying Android application is a simple chatbot that allows the user to send and receive
messages with Quarantine Buddy. I built the application in Java using Android Studio, and it is composed
of three main files: MessageActivity.java, MessageAdapter.java, and Message.java, as well as layout xml
files. In the Android lifecycle, an activity corresponds to a single screen in an app, and it is where the
application’s functionality is implemented. By contrast, UI elements are configured in the layout xml
files. The main activity for my application was MessageActivity.java, where I initialize the app in the
onCreate() method, configure an onClickListener in sendButton(), post messages using postMessage(),
and determine the chatbot replies in reply(). MessageActivity.java also references MessageAdapter, a
class that extends RecyclerView.Adapter and binds elements from Message class objects to the
appropriate UI elements.

On the frontend, two message_board_layout.xml and message_cell_layout.xml determine the UI.
Message_board_layout.xml utilizes a RecyclerView ViewGroup to display an unlimited number of
messages. The layout for each individual message is determined within message_cell_layout.xml.

Future improvements:

Due to time and resource constraints, there were some features that I wasn’t able to implement for this
project but hope to implement in the future to improve the product as a whole. First, and most obviously,
the cardboard figure could be improved using a 3D-printed prototype. 3D-printing has greater flexibility
in terms of machining than a cardboard cut with scissors does, which would allow for a more intricate and
visually pleasing design. Most 3D-printed plastics also have greater longevity than cardboard, which is
especially important at the interface between the figure and the motor, which will wear down fairly
quickly on the cardboard prototype.

There were also several improvements I hoped to implement in the Android application. I looked into
different ways to communicate between the app and the ESP32, including using the UsbManager class to
read and write to the serial monitor and hopefully turn the Quarantine Buddy on automatically when the
app was launched. I began implementing this functionality in lines 44 through 55 of
MessageActivity.java, but unfortunately I was not able to successfully connect to the ESP32 USB. Still,
with some more time and possibly by utilizing wifi communication, this would definitely be an interesting
feature to implement. Also, the current chatbot AI could be improved and expanded using natural
language processing, which would use machine learning to develop authentic responses. This could be
done using the Google Cloud Natural Language API.

Appendix 1: Arduino Code

Appendix 2: Android Code

