ME 102B Project: Automatic Tea Maker 3000

Project Description

During the day | drink loads of tea because it has caffeine so it often gives me a little bit of a jolt.
However, the process of making tea is time consuming and breaks my concentration. If only |
could have tea with the press of a button. Well, with this device | can. The Automatic Tea Maker
3000 is able to hold a stock of 3 cups of tea and automatically boils water and creates more
stock once the 3 cups are finished. One order button keeps track of how many cups of tea |
wanted, and one serve button is used to serve me the tea once | am ready to receive it. | added
the serve button because | didnt want the machine squirting tea without me first placing the cup
in the respective position.

Setup

Components

The two non standard devices I'm using here are the peristaltic pump, magnetic stirrer, and the
relay device. The screen is also in the picture but | couldn't figure out how to use it so | didn't
include it in the final prototype.

Relay: This is a device used to control other devices that run on higher power than the
arduino’s max. I'm using it to control the 2 peristaltic pumps and the kettle. They run on 12V and
110V respectively. The relay is essentially a switch so | had to split the hot wire of the kettle and
connect it to the 2 ends of the relay, and for the pumps | have the same set up but | was able to
just use loose wires. When the relay receives a low signal on one of the pins located on the
upper side of it, it connects the wires of the respective device to be turned on. You will also
notice that | have a separate 5V supply for the relay device. | was reading online that this is
good practice in case something goes wrong with the relay mechanism. This way your arduino
and computer will not be subjected to the high voltage and currents that the relay controls.

Peristaltic Pumps: These pumps are really no special than any other pump, they just carry fluid
from one place to another. The advantage of these is that they do not need priming. Priming of
the pump is the process of getting rid of all the air bubbles and cavities. Traditional pumps
cannot run this way because they cannot pump air. Peristaltic pump works using peristalsis so it
is able to also pump air, although not very good at it. This ability makes it possible for the pump
to pump out all the air before getting to the fluid, therefore self priming. It makes it the ideal
pump to use for little fluid transfers like this. One disadvantage is that it is much slower than a
traditional pump.

Magnetic Stirrer: | am not really controlling this device but it is still a part of my system. | saw
this device first in chemistry class and never thought | would use it. It basically creates a rotating
magnetic field and there is a spinner that comes with it which you can put into the container you
are intending to stir. The spinner is magnetic so it rotates with the field, stirring the liquid.

Finite State Diagram

*At any and all states if a tea request is made increase pending
order counter by 1

positive afid stock is full

ot (pending order counter

is positive and stock is full) Dispensing ended

Stock is 0

et stock count to 3

turn on the relay for kettle
for 3 mins

After 30 seconds transfer

is finished

Run serving pump for 45
seconds and decrease
counter by 1

After 3 mins turn on transfer
pump for 30 seconds

Circuit Diagram

Appendix

1 //inputs

2 #define SERVE_BUTTON_PIN 2 //interrupt only works on pins 2,3 on arduino uno
3 #define ORDER_BUTTON_PIN 3

4

5 #define RELAY_PIN_BOIL 4

6 #define RELAY_PIN_STOCKPUMP 5

7 #define RELAY_PIN_SERVEPUMP 6

8

9

10 int stock = 0;

11 int max_stock = 3;

12 int pending_Orders = 0;

13 bool serve = 0;

14

15 int state = 0;

16 int stocking_stage = 0;

17

18 long StockStartTime;

19 long TransferStartTime;

20 long boil_time = 60000;

21 long transfer_time = 150000;

22 long lastPrint = @;

23

24 void setupQ) {

25 // put your setup code here, to run once:
26 pinMode(SERVE_BUTTON_PIN, INPUT_PULLUP);
27 pinMode(ORDER_BUTTON_PIN, INPUT_PULLUP);
28

29 pinMode(RELAY_PIN_STOCKPUMP, OUTPUT);

30 pinMode(RELAY_PIN_SERVEPUMP, OUTPUT);

31 pinMode(RELAY_PIN_BOIL, OUTPUT);

32

33 digitalWrite(RELAY_PIN_BOIL, HIGH);

34 digitalWrite(RELAY_PIN_STOCKPUMP, HIGH);
35 digitalWrite(RELAY_PIN_SERVEPUMP, HIGH);
36

37 attachInterrupt(digitalPinToInterrupt(SERVE_BUTTON_PIN), serveButtonIsPressed, RISING);
38 attachInterrupt(digitalPinToInterrupt(ORDER_BUTTON_PIN), orderButtonIsPressed, RISING);

41 //Start serial com
42 Serial.begin(9600);

45 void loop() {

46 if (millisQ) - lastPrint > 1000) {
47 // Serial.print("stock");

48 // Serial.print("\t");

49 // Serial.print("state");

50 // Serial.print("\t");

517/ Serial.print("stocking_stage");
52 // Serial.print("\t");

53// Serial.print("pending_Orders");
54 // Serial.print("\t");

55// Serial.print("SERVE_BUTTON_PIN");
56 // Serial.print("\t");

57 // Serial.print("ORDER_BUTTON_PIN");
58 // Serial.print("\n");

59 //

60 // Serial.print(stock);

61// Serial.print("\t");

62 // Serial.print(state);

63// Serial.print("\t");

64 // Serial.print("\t");

65 // Serial.print(stocking_stage);
66 // Serial.print("\t");

67 // Serial.print("\t");

68 // Serial.print(pending_Orders);
69 // Serial.print("\t");

70 // Serial.print("\t");

71// Serial.print(digitalRead(SERVE_BUTTON_PIN));
”y// Serial.print("\t");

737/ Serial.print("\t");

74 // Serial.print(digitalRead(ORDER_BUTTON_PIN));
174 Serial.print("\n");

76

77 Serial.print("stock");

78 Serial.print("\t");

79 Serial.print("pending_Orders");
80 Serial.print("\n");

81

82 Serial.print(stock);

83 Serial.print("\t");

84 Serial.print(pending_Orders);

85 Serial.print("\t");

86 Serial.print("\n");

87

88

R0 lactPrint = milli<()-

89 lastPrint = millisQ;
2 1}

92 // put your main code here, to run repeatedly:
93 if (stock <=0) {
94 state = 2;

96 } else if (pending_Orders > @) {
97 state = 1;

98 } else {

99 state = 0;
100 3

101

102 switch (state) {
103 case @: //IDLE STATE

104 //Serial.print("state@");

105 //chillin

106

107 break;

108

109 case 1: //SERVING STATE

110 //Serial.print("statel™);

114

112

113 if (digitalRead(SERVE_BUTTON_PIN)==0) {
114 Serial.print("Serving");

115 Serving(); //Service Routine
116 serve = @; //reset evetn flag
117 3

118 break;

119

120 case 2: //STOCKING STATE

121 //Serial.print("state2");

122

123 if ((millisQ) - StockStartTime) > (boil_time + transfer_time + 10000)) { //this step init
124 StockStartTime = millisQ;
125 stocking_stage = 0;

126 3

127

128 switch (stocking_stage) {

129 case @

130 //Serial.print("state3");
131 //boiling

132

136 digitalWrite(RELAY_PIN_BOIL, LOW);

137

138 if ((millis() - StockStartTime) > boil_time) { //3mins
139 //Serial.print("zero");

140 TransferStartTime = millisQ);

141 digitalWrite(RELAY_PIN_BOIL, HIGH);

142 digitalWrite(RELAY_PIN_STOCKPUMP, LOW);
143 stocking_stage = 1;

144 3

145 break;

146 case 1:

147 //transfering

148 //Serial.print("one™");

149 if ((millisQ) - TransferStartTime) > transfer_time) { //10 secs
150

151 digitalWrite(RELAY_PIN_STOCKPUMP, HIGH);
152 stocking_stage = 2;

153

154

155

156 break;

157 case 2:

158 //Stocking Complete

159 digitalWrite(RELAY_PIN_BOIL, HIGH);

160 digitalWrite(RELAY_PIN_STOCKPUMP, HIGH);
161 stock = max_stock;

162

163

164 break;

165

166 }

167

168

169 }

170 void serveButtonIsPressed() {
171 //Serial.print("here");

172 serve == 1;

173 //Serial.print(serve);
174}

175 void orderButtonIsPressed() {
176 pending_Orders += 1;

177}

178

179 void Serving(Q {

167

168 1}

169 }

170 void serveButtonIsPressed() {

171 //Serial.print("here");

172 serve == 1;

173 //Serial.print(serve);

174 }

175 void orderButtonIsPressed() {

176 pending_Orders += 1;

177 }

178

179 void Serving() {

180

181 digitalWrite(RELAY_PIN_SERVEPUMP, LOW);
182 delay(45000); //1@secs

183 digitalWrite(RELAY_PIN_SERVEPUMP, HIGH);
184 pending_Orders -= 1;

185 stock -= 1;

186 }

