
Johnson 1

V-12T: Bluetooth Controlled Vehicle

By Kiaria Johnson

ME102B: Mechatronics Design

Dr. Hannah Stuart and Dr. Homayoon Kazerooni

University of California Berkeley | Fall 2020 | December 8, 2020

Johnson 2

Product Description:

During the Fall 2020 semester, I learned how to control motors via Bluetooth connection between a phone

application and a microcontroller. To this day, I enjoy messing around with remote controlled cars, so I

figured it would be cool to make my own. I primarily used mixed materials like cardboard, plywood, and

cardstock to construct the outer body and aesthetic features of this tank-like vehicle. Overall, the final

product is a fun little Bluetooth controlled vehicle that can maneuver on flat, incline, and rough surfaces if

desired.

Electronic and Mechanical Features:

DC Gearbox motors and Mini Servo motor: While the two DC motors supply power to actuate the wheels

to move the vehicle, the servo motor adds extra character to the vehicle by actuating a turret made from

cardboard in a sweeping pattern.

Tank Body: Almost entirely constructed from cardboard, the tank body houses the DC motors, mini

servo, and Romeo BLE Mini microcontroller, in addition to a battery box that can be seen in Figure 2,

which sits a level between the bottom trapezoidal cardboard piece and the mid-level cardboard flat, which

supports the motors and microcontroller.

Figure 1: (Left) Top trapezoidal piece of tank with cutout for mini servo and (right) two DC gearbox

motors fixed to trapezoidal base. The Romeo BLE Mini microcontroller is also shown (see part

description).

Johnson 3

Part Description:

• DC gearbox motors [1]: possessing a

1:48 gear ratio, the T shaft output

provides more torque at the cost of

reduced speed compared to the motor

shaft. The rear wheels interface

directly with the output shaft.

• Mini Servo Motor [2]: actuates the

turret sweep. Has potential to have its

functionality modified via code for

more advanced sequences apart from

a simple sweep pattern.

• Romeo BLE Mini [3]: this

microcontroller has a servo and DC

motor driver built in, in addition to being battery operated via the battery pack shown in Figure 2

amounting to 6 volts. Thus, each component listed above was connected and controlled by the

microcontroller, which also acted as a voltage source.

• GoBLE iOS Application [4]: Possesses a scan function to connect to Bluetooth devices in the area

and has a four-button directional pad to control motor direction for forward, reverse, and turning

operations. There is also a digital joystick that can handle wider turns and reverse operations (not

used), as well as a “kill switch” to stop the motors from operating when pressed at any point

during operation.

Circuit:

The circuit is straight forward as shown below. The motors are connected to their respective inputs on the

microcontroller and the battery pack is connected to Vin. The rest is all handled by the code which can be

seen in Appendix I.

Figure 2: Side view highlighting the servo motor and battery pack

within the tank body.

Servo connected across pin

9 (wires: digital (green),

Vcc (red), GND (black))

Johnson 4

Finite State Diagram:

The tank is controlled by a series of “if” statements that determine whether a specific motor control

button is pressed. For instance, if the up button is pressed the motor will go in reverse (since it was built

that way) so long as the button is held. Once it is released the motor will stop on the spot and the

microcontroller waits until another button is pressed to command the motors accordingly (Note: joystick

functionality not used, so its FSD operation is omitted).

Before motor actuation begins, the microcontroller waits until a Bluetooth connection has been

established between the desired device and itself (indicated via by a solid blue light instead of a blinking

green light on the board).

State Descriptions:

1) Init: initialize motor and servo pins and variables used.

2) Idle 1: blink green LED until a Bluetooth (BT) source is connected, then Blue LED set to HIGH.

3) Idle 2: wait for button press to actuate motors.

4) Forward: send PWM signal to both motors to run forward (as wired) at 200 out of 255 duty.

5) Reverse: send PWM signal to both motors to run reverse (as wired) at 75 out of 255 duty.

6) Left: send PWM signal to both motors at 100 out of 255 duty, where one runs forward and the

other in reverse.

7) Right: send PWM signal to both motors at 100 out of 255 duty, where one runs forward and the

other in reverse (motor direction opposite of Left command).

***Note: All arrows returning to Idle 2 from a directional button signal a button release and subsequent waiting for

next button press OR the “Kill Switch” being pressed.

Init

Idle 1

Idle 2

Forward

Reverse

Left

Right

No BT detected/Scan

Again

Johnson 5

Appendix I: Arduino Code

/* -----Flamewheel Bluetooth Control Program

//------2016.6.29 by LL

//------Suitable for Romeo BLE Mini MCU

//https://www.dfrobot.com/index.php?route=product/product&product_id=1367&search=ble+mini&descr

iption=true#.V8AR1q11Zfc

*/

#include "GoBLE.h"

#include <Romeo_m.h>

#include <Servo.h>

Servo myservo;

int pos = 90;

#define LED 13

//GoBLE Goble(Serial);

int joystickX, joystickY;

int buttonState[7];

unsigned int led_count;

long current_t;

long prev_t = 0;

int count = 0;

void setup() {

 Romeo_m.Initialise();

 Goble.begin();

 pinMode(LED, OUTPUT);

 myservo.attach(9);

}

void loop() {

Johnson 6

 if (Goble.available())

 {

 readGoBle();

 motorContrl();

 }

 current_t = millis();

 if (current_t - prev_t >= 75){

 updateServo();

// Serial.println(current_t-prev_t);

 prev_t = current_t;

 count++;

 }

 delayLedBlink();//delay 10ms and led blink

}

//Read GoBLE values

void readGoBle()

{

 // read joystick value when there's valid command from bluetooth

 joystickX = Goble.readJoystickX();

 joystickY = Goble.readJoystickY();

 // read button state when there's valid command from bluetooth

 buttonState[SWITCH_UP] = Goble.readSwitchUp();

 buttonState[SWITCH_DOWN] = Goble.readSwitchDown();

 buttonState[SWITCH_LEFT] = Goble.readSwitchLeft();

 buttonState[SWITCH_RIGHT] = Goble.readSwitchRight();

 buttonState[SWITCH_SELECT] = Goble.readSwitchSelect();

 buttonState[SWITCH_START] = Goble.readSwitchStart();

 /*Serial.println("========================");

 Serial.print("Joystick Value: ");

 Serial.print(joystickX);

 Serial.print(" ");

Johnson 7

 Serial.println(joystickY);

 for (int i = 1; i <= 6; i++) {

 if (buttonState[i] == PRESSED) {

 Serial.print(" ID: ");

 Serial.print(i);

 Serial.print("\t ");

 Serial.println("Pressed!");

 }

 if (buttonState[i] == RELEASED){

 Serial.print("ID: ");

 Serial.print(i);

 Serial.print("\t ");

 Serial.println("Released!");

 }

 }*/

}

//Move according to GoBLE value

//Joystick left and right to turn bends, left and right buttons to spin on the spot

void motorContrl()

{

 if ((buttonState[SWITCH_UP] == PRESSED) || ((joystickX > 128) && (joystickY >= 64) &&

(joystickY <= 192)))

 {

 Romeo_m.motorControl(Forward, 75, Forward, 75); //go forward

 return;//end function

 }

 if ((buttonState[SWITCH_DOWN] == PRESSED) || ((joystickX < 128) && (joystickY >= 64) &&

(joystickY <= 192)))

 {

 Romeo_m.motorControl(Reverse, 200, Reverse, 200); //go backwards

 return;//end function

 }

Johnson 8

 if (buttonState[SWITCH_LEFT] == PRESSED)

 {

 Romeo_m.motorControl(Reverse, 100, Forward, 100); //turn left

 return;//end function

 }

 if ((joystickY < 128) && (joystickX >= 64) && (joystickX <= 192))

 {

 Romeo_m.motorControl_M1(Forward, 80); //turn left big bend

 Romeo_m.motorControl_M2(Forward, 200);

 return;//end function

 }

 if (buttonState[SWITCH_RIGHT] == PRESSED)

 {

 Romeo_m.motorControl(Forward, 100, Reverse, 100); //turn right

 return;//end function

 }

 if ((joystickY > 128) && (joystickX >= 64) && (joystickX <= 192))

 {

 Romeo_m.motorControl_M2(Forward, 80); //turn right big bend

 Romeo_m.motorControl_M1(Forward, 200);

 return;//big bend

 }

 Romeo_m.motorStop();//no stop button is pressed

}

//led blink funtion, each execution delay 10ms. every 100 times level inverted

void delayLedBlink()

{

 delay(10);

 led_count++;

 if (led_count > 100)

 {

Johnson 9

 digitalWrite(LED, !digitalRead(LED));

 led_count = 0;

 }

}

// Update servo position without using delays

void updateServo()

{

 if (count <= 45){

 myservo.write(pos);

 pos++;

 }

 else if (count <= 120){ // Full range swept increment back to starting position

 myservo.write(pos);

 pos--;

 }

 else if (count < 150){

 myservo.write(pos);

 pos++;

 }

 else if (count == 150){

 myservo.write(pos);

 pos = 90;

 count = 0;

 }

}

Johnson 10

Appendix II: Project Component Websites

[1] https://www.adafruit.com/product/3777

[2] http://www.chd.hk/Product_Detail.aspx?id=29

[3] https://www.dfrobot.com/product-1367.html

[4] https://apps.apple.com/us/app/goble-bluetooth-4-0-controller/id950937437

Wheels Interfaced with the Motor: https://www.adafruit.com/product/3763

https://www.adafruit.com/product/3777
http://www.chd.hk/Product_Detail.aspx?id=29
https://www.dfrobot.com/product-1367.html
https://apps.apple.com/us/app/goble-bluetooth-4-0-controller/id950937437
https://www.adafruit.com/product/3763

