The Automatic Plant Watering Device
By Sara Mirza

Description of the product:

I have around 40 plants in my room. I’d like to say that | take very good care of them, but there are times
where | may overlook watering a plant or two for more than intended, especially those that are out of my
reach. | bought a moisture sensor to check the water content of my plant’s soil, but | still have to actively
go around my plants and check. | decided to use this project as a push to create Something that would
assist me. | designed a device that would always be measuring the moisture level of the soil and warn me
when a plant’s soil is too dry. Furthermore, in the case that | am occupied and I do take more than a
couple of days to water the plant, then the device would water it for me!! The only unfortunate part about
this is that | needed to design a container to hold water and an accurate and durable stopper to open and
close it. This was really hard to do at home without having any leakage. So | decided to just control the
actuator for now and hopefully in the future | can have access to a 3D printer.

Figure 1: Most of the plants in my room. The ones | tend to leave dry for longer than intended are the ones on the top of the shelf.
I have more plants on the windowsill shown in Appendix B.

For a video example of the device’s operation and testing, visit
Electromechanical details:

Interfacing with the device: almost all of the components are neatly tucked into the control box which is
the main body of the device. | used an LCD screen to show the value of the soil’s current water
percentage, as well as 2 LEDs to warn me when the moisture level dropped below the desired level.

The system uses a capacitive soil moisture sensor. The sensor outputs a voltage value which is converted
to a water percentage.

I used a servo motor as | only need a 180-degree revolution in order to open a valve and let water out and
the pole count also does not really make a difference to my use. The servo motor is the only component
used that requires a 5V input, and that is what the power supply is for.

ME102B - Fall 2020
Final Project

Figure 2: LEDs and an LCD screen are attached at the front of the box in the user’s sight, the moisture sensor and servo motor’s
wires go through a hole on the side of the box, and all the cables, and resistors, as well as the microcontroller sit inside. There
are two holes at the back for the USB plug and the power supply plus. The moisture sensor is inserted in the soil, and the motor
would have been attached to the water container system and either be on a stand, by the plant or hung up on the wall. A cup
filled with soil was used for testing and the demo for the purpose of not overwatering the plant.

Circuit:

In my system, including the calibration portion, there were 4 main components: 1) the servo motor, 2) the
OLED screen, 3) the capacitive soil moisture sensor and 4) the load cell and the hx711 amplifier. The
challenge in this project for me was that with the exception of the servo motor, all the other main
components were new to me, and | had to find out which libraries I need to install and what commands |
needed to use to properly get the result | need. Having all the components work together at the same time
also had its complexity.

1) Servo motor (SG90 9g Micro Servo, 4 for ~$9). The motor operates at voltages between 4.8-6V.
It comes with an encoder that | used to send signals to the motor. | only move it from 0 to 180
degrees and back.

2) OLED screen: it is a small screen with a resolution of 128x32 screen that can operate at DC
voltages between 3.3-5V but I decided to use my microcontroller to power it. | bought a bigger
one as | thought it would fit more nicely and also be easier to read out from but I needed to solder
connections to it and | don’t have such equipment so | continued to use the smaller one.

3) Capacitive soil moisture sensor: this kind of sensor works by measuring the changes in the
capacitance cause by the changes in the dielectric. Instead of measuring moisture, it measures the
ions that are dissolved in the moisture, and thus it produces a voltage output. This output is then
taken and is converted to a water percentage using an equation | obtained during the calibration
process which | will discuss.

4) The load cell and hx711 amplifier: There are 4 strain gages that are attached to the load cell that
form a Wheatstone bridge. As force is applied to the load cell, it temporarily deforms, causing
some of the strain gages to compress and others to stretch, this changes the resistance of the

https://www.amazon.com/gp/product/B07MLR1498/ref=ppx_yo_dt_b_asin_image_o02_s00?ie=UTF8&psc=1

ME102B — Fall 2020
Final Project

circuit. The output of the load cell is the potential difference at the center of the Wheatstone
bridge, which changes as a result to the resistance changing.

In addition to these components, | added two LEDs and current limiting resistors that | used to give me a
visual signal when the water percentage dropped too low.

When the USB cable is unplugged, I can use the 5V power supply to power it as the ESP32 has an on-
board regulator that converts the voltage to 3.3V.

VCC - BROWN

our e SoilWatch 10

Figure 3: The circuit diagram for this machine

Calibration of moisture sensor:

I used a kitchen scale to obtain the mass of an object that | used to calibrate the load cell.

0l Yy23epjios

ME102B - Fall 2020
Final Project

State

20

30 40
Time (s)

50 60

70

Water Percentage %

ME102B - Fall 2020
Final Project

Project_Script

fEx ME

)
av]
H
s}
.
1M
I8}
[m)
[95]
Q
H
;
fum
t

#include <ESP32Servo.h>

#include <SPI.h>

#include <Wire.h>

#include <Adafruit GFX.h>

10 #include <Adafruit 5S5D1306.h>

11

12 // CONSTANTS / VARS $%%5%%%%%%%%%%%%%5%%%%%%
13

14 //INPUTS

15 #define SOIL PIN AO //AOUT pin on sensor

00 =1 o 0 b W B =

o

16

17 //OUTPUTS

18 Servo myservo; // create servo object to control a servo
19 // lé servo objects can be created on the ESP32

20 #define SERVO PIN 13

21 #define LEDS 21

22

23 float sensor val;

24 float water per = 0;

25 const float per ref = 32.47;

26 boolean state = 1;

27

28 long initial time;

29 long current time;

30 long time lapse;

31 const long waiting period = 10;//172800 // in seconds (2 days)
32

33 //Displaying Intervals

34 long D I T;

35 long D C T;

36 float D T L;

37 const fleoat D_W P = 1000; //2.5 seconds

38

39 // OLED SCREEN

40 #define SCREEN WIDTH 128 // OLED display width, in pixels
41 #define SCREEN HEIGHT 32 // OLED display height, in pixels
42 // Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)

43 #define OLED RESET 4 // Reset pin # (or -1 if sharing Arduino reset pin)
44 Adafruit 55D1306 display(SCREEN WIDTH, SCREEN HEIGHT, &Wire, OLED RESET):;
45 #define NUMFLARKES 10 // Number of snowflakes in the animation example

46 #define LOGO_ HEIGHT le
47 #define LOGO_WIDTH 1o
48 static const unsigned char PROGMEM logo bmp[] =

[
PR Ve RaNs)

I Vo T s = RRE B RO BT = P T A T © R == B Ve B s = I e AT 1 BT =S L S I

= =1 & Sy Oy Oy O Oy O O Oy N1 U1 nonoanoanoan U1 U1l

=«

12

= L B B B
WO =]y o

’]

DD D =] o W = O

[N B Ne T V'e T Ve T Ve N W Se w R ' R w R o o N o B o e R o B w s o = R w'a]

(IS B R WS) S T

ME102B - Fall 2020
Final Project

static const unsigned char PROGMEM logo bmp[] =

{ BO0O0O0O0O0O0OO, B1100000O,
B0O0000001, B11000000,
B0O0000001, B11000000,
B00000011, B11100000,
B11110011, B11100000,
B11111110, B11111000,
B01111110, B11111111,
B00110011, B10O11111,
B00011111, B11111100,
B00001101, BO1110000,
B00011011, B10100000,
B00111111, B11100000,
B00111111, B11110000,
B01111100, B11110000,
B01110000, BO1110000,
BO0OOO0O000O, BOO11000O };

//INITIALIZE TIMER

hw timer t * timer = NULL;

portMUX TYPE timerMux = portMUX INITIALIZER UNLOCKED;
int timer counter=0;

int old timer counter=0;:

void IRAM ATTR isrTimer () {
printing () ;
//testdrawstyles ()
PortENTER CRITICAL ISR(&timerMux);

//Serial.println(timer counter):;
timer counter++;

portEXIT CRITICAL ISR (&timerMux);
//5erial.println(long(millis())):

void setup() {
// put your setup code here, to run once:
Serial.begin(9600); // serial port setup

// SERVO MOTOR SET UP %%%%%%%%

// Allow allocation of all timers

ESP32PWM: :allocateTimer (0) ;

ESP32PWM: :allocateTimer (1) ;

ESP32PWM: :allocateTimer (2)

ESP32PWM: :allocateTimer (3)

myservo.setPeriodHertz (50); // standard 50 hz servo

myservo.attach (SERVO _PIN, 500, 2400); // attaches the servo on pin 13 to the servo object
// different servos may require different min/max settings

ME102B - Fall 2020
Final Project

[T T T e T

// for an accurate 0 to 180 sweep

W oW W WP
O - o

//OLED SCREEN %%%%%%

// S5D1306_SWITCHCAPVCC = generate display voltage from 3.3V internally
100 if (!display.begin (SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32
101 Serial.println(F("SSD1306 allocation failed")):
102 for(;:;): // Don't proceed, loop forever

103 1}

104 // Show initial display buffer contents on the screen --

105 // the library initializes this with an Adafruit splash screen.

106 display.display():

107 delay(2000); // Pause for 2 seconds

108 // Clear the buffer

109 display.clearDisplay() s

110 // Draw a single pixel in white

111 display.drawPixel (10, 10, SSD1306_WHITE) ;

112 // Show the display buffer on the screen. You MUST call display() after
113 // drawing commands to make them visible on screen!

114 display.display():

115 delay(2000);

116

117 //TIMER %%%%%%%%%%%

118 timer = timerBegin(0,80,true); //Timer triggering 80 million times a second so when we set 80 we are saying one second is 1000000
119 timerAttachInterrupt (timer, &isrTimer, true);

120 timerAlarmWrite (timer, 1000000, true);//Runs one second at a time
121 timerAlarmEnable (timer) ;

122

123 pinMode (LEDS, OUTPUT);

124

125}

126

127 void loop() {

128 current_time = millis();

129 time_lapse = ((current_time - initial_time)/1000);

130 sensor_val = (analogRead (SOIL_PIN)/1023); //read sensor

131 water_per = -31.3774*sensor_val + 101.9908;

132 if (water per < per ref && state==1){

133 state = !state;

134 alert()s

135 initial_time = millis();s

136 //Serial.println("111111111111111111111111111111111")5

137 }

138 else if(water_per < per_ ref && state==0 && time_lapse < waiting period) {
139 alert()s

140 //Serial.println("22222222222222222222222222222222") ;

141}

142 else if (water per < per_ref && state==0 && time lapse >= waiting period) {
143 alert();

ME102B - Fall 2020
Final Project

144 state=1;

145 myservo.write (90)

146 delay (2000);

147 myservo.write (0);

148 initial time = millis{():

149 //Serial.println("333333333333333333333333333333333");
150 }

151 if(water per > 32 && state==0){

152 state = !state:;

153 initial time = millis{();

154 //Serial.println("444444444444444444444444444444444");
155 }

156

157D C T =millis();

158 D T L

float(D. C. T - D I T);

1594if (DT L >D W P){

160 testdrawstyles () :

lel DI T =millis();

162}

163

164

1651}

166 void alert(){

167 digitalWrite (LEDS, HIGH):; // turn the LED on (HIGH is the wvoltage lewvel)

168 delay (1000) ; // wait for a second

169 digitalWrite (LEDS, LOW); // turn the LED off by making the voltage LOW
170 delay (1000) ; // wait for a second

171}

172

173 //Printing for trouble shooting (every 4s)

174 //wvoid printing() {

175 // Serial.print("Scil Moisture Sensor Voltage: "):
176 // Serial.print(sensor val); // read sensor

177 // Serial.println("™ V"):

178 // Serial.print ("Water Percentage: ");

179 // Serial.println(water per):

180 // Serial.print("state: ");

181 // Serial.println(state):

182 // Serial.print("time lapse: ");

183 // Serial.println(time lapse):

184 // //delay(100); // slight delay between readings
185 //}

186

187 //printing for plotting (every 0.53)

188 void printing() {

189 Serial.print(millis()/1000):

180 Serial.print(","):

191 Serial.print (water_ per);

ME102B - Fall 2020
Final Project

164

165}

lee void alert(){

167 digitalWrite (LEDS, HIGH):; // turn the LED on (HIGH is the voltage level)
168 delay (1000): // wait for a second

169 digitalWrite (LEDS, LOW); // turn the LED off by making the voltage LOW
170 delay(1000): // wait for a second

171}

172

173 //Printing for trouble shooting (every 4s)
174 //void printing() {

175 // Serial.print("Soil Moisture Sensor Voltage: ");
176 // Serial.print(sensor wval); // read sensor
177 // Serial.println(" Vv"):

178 // Serial.print ("Water Percentage: ");

179 // Serial.println(water_per);

180 // Serial.print("state: ")

181 // Serial.println(state);

182 // Serial.print("time lapse: "):

183 // Serial.println(time_lapse);

184 // //delay(100); // slight delay between readings
185 //}
186
187 //printing for plotting (every 0.5s)
188 void printing(){
189 Serial.print(millis()/1000):
190 Serial.print(","):
191 Serial.print (water_per):
(N

192 sSerial.print(","):

193 Serial.print (state):

194 Serial.println(";");

195 //delay(100); // slight delay between readings
196}

197

198 void testdrawstyles() {

199 display.clearDisplay();

200 display.setTextSize (1) // Normal 1:1 pixel scale
201 display.setTextColor (5501306 WHITE) ; // Draw white text
202 display.setCursor(0,0): // Start at top-left corner

203 display.println(F("Moisture Percentage")):

204 display.setTextSize(2): /f/ Normal 1:1 pixel scale
205 display.setTextColor (55D1306_WHITE) ;

206 display.setCursor(30,15);

207 display.print(water_per);

208 display.println(F("%")):

209 display.display{():

210}

211

ME102B - Fall 2020
Final Project

10

