
Shower Temperature Controller
By Rees Shephard Parker, 25593417

Description of the product:
The shower in my apartment has erratic water temperatures. Without moving the knob, the water will
rapidly become scalding hot or tap cold. Through a series of rudimentary tests while showering, I
determined that this is due to some inconsistent pressures in the plumbing as there is always hot water
when the knob is turned fully CW. The resulting randomly shifting water temperature in my apartment’s
shower leads to a poor showering experience, as such, I thought this would be a good opportunity to learn
more about stepper motors, temperature sensors, and designing control systems. This shower temperature
controller uses a thermistor in line with the plumbing to determine water temperature and a stepper motor
to turn the shower knob to modify water temperature.

[Figure 1]: The shower temperature controller, note the high-tec seran-wrap and duct-tape-egg-carton drip guards to protect the
breadboard and electronics.
Too see a demo of the product running, see the provided link: https://youtu.be/gSVHAPVClmM

Electromechanical details: (~1 page total with images)
Mount/Frame/Housing : The motor and power transmission sits atop a wood frame. There is nothing fancy
about this wood frame, I built it simply because I am a renter and prefer keeping my security deposit
intact. A more permanent version of this controller would most likely be screw-mounted or embedded in
the walls. The roof and walls (the lighter colored wood) above the motor is removable for easy access to
power transmission.

Power Transmission : The main output power source is obviously the stepper motor
(https://www.adafruit.com/product/324), but to get that power to the shower knob required a shaft
(https://www.mcmaster.com/1265K44/), flexible shaft coupling (https://www.mcmaster.com/2464K1/),
bearings (https://www.mcmaster.com/6153K113/), bearing mounts
(https://www.mcmaster.com/3971N52/), a timing pulley (https://www.mcmaster.com/3684N13/), and a
timing belt (https://www.mcmaster.com/3682N2/). Additionally, the shower knob was wrapped with
sponge window sealing tape to increase grip between the knob and timing belt. The timing belt pulley had
to be measured and put together using super glue and satin-ribbon.

1

https://youtu.be/gSVHAPVClmM
https://www.adafruit.com/product/324
https://www.mcmaster.com/1265K44/
https://www.mcmaster.com/2464K1/
https://www.mcmaster.com/6153K113/
https://www.mcmaster.com/3971N52/
https://www.mcmaster.com/3684N13/
https://www.mcmaster.com/3682N2/

Thermistor : The thermistor (PANW103395-395) was put in line with the shower head so that it could
non-invasively read water temperature during operation. Putting it in line was just a matter of using
various adapters and teflon tape to prevent leaks. The thermistor was then put in series with a 10 kΩ
resistor and analog output was placed between them. A higher water temperature led to a lower resistance
which led to lower output recorded voltage. Cold led to higher which led to higher.

[Figure 3]: From left to right, the thermistor alone, installed in plumbing adapters, and, finally, put in line with the shower head.

2

https://www.digikey.com/en/products/detail/ametherm/PANW103395-395/9084083?utm_adgroup=Temperature%20Sensors%20-%20NTC%20Thermistors&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_Sensors%2C%20Transducers&utm_term=&utm_content=Temperature%20Sensors%20-%20NTC%20Thermistors&gclid=CjwKCAiAtej9BRAvEiwA0UAWXkX0olr8tuOKFMQH8nzJKb6C2T-PLiR3gGufu2EOJS35JdiqHTjjZhoCYrAQAvD_BwE

Circuit and system response:
This project has three main components, the stepper motor, the thermistor, and the stepper response.

1. Stepper: To determine what stepper motor I would need, I did some manual testing using a
chopstick, rubber bands, and a very light weight (a small nalgene bottle weighing 90g) to
determine that the amount of torque required to turn the shower knob was less than 0.1 N*m. I
found a 12V stepper on adafruit (link is above) that could supply such torque even when powered
with a 5V 2A DC/AC adapter. This stepper motor was then driven with the motor driver provided
in the labkit, the DRV8833 Dual Motor Driver Carrier.

2. Thermistor: choosing a potential temperature sensor was a much simpler decision. I just googled
thermocouples and thermistors until I found one that was capable of installing in a ⅛” plumbing
adapter sold on digikey (link is above). This thermistor has a room temperature resistance of
10kΩ, so I placed it in series with the microcontroller’s 3.3V output, a 10kΩ, and ground, and
placed the analog output to pin A2 between the thermistor and resistor. Calibration data is
available in Appendix 1. This data is from a test where I simply wired the thermistor and
manually adjusted the shower temperature until it was comfortable. From this I determined that
the target voltage reading that indicated a comfortable water temperature was in the range of 980
to 1000 mV. I could have used this voltage to find the resistance of the thermistor and used
Appendix 3 to determine what temperature this corresponded to, but decided that simply if it was
comfortable, that’s all I needed to know (I won’t lie, time crunch did factor into this decision).

3. Stepper response: my shower knob has a range of movement of 120 o which corresponds to 810 o
of stepper motion. I determined this manually by measuring the shower knob max and min angles
and seeing how far the stepper turned during this. From here I knew that 1 o of knob rotation
corresponds to 6.75 o of stepper rotation. I first opted for an arbitrary set of turns as documented in
Appendix 2, simply that the further the temperature is from the target, the more the stepper should
turn. I found that this created a positive feedback loop as the stepper turned faster then the water
could change temperature and the thermistor could report the change. I measured how long the
water took to change temperature (~4 seconds), so I added a 5 second delay (to be safe) to the
stepper response, the device was then able to maintain temperature within the 980-1000 mV
range. A delay here is appropriate as changes in water temperature are relatively slow.

3

Finite state machine:
The device’s behavior is not too complicated. The micro simply checks temperature every 5 seconds and
then drives the stepper if necessary. In Figure 5, it can be seen that the main complicating factor is just the
specific response dictated by each voltage range. Also included is the graphed results from a test run.

Figure 5: Finite State Diagram for the device.

Figure 6: data from a run of the device. As can be seen above, the device is able to maintain a
temperature around the corresponding ideal voltage of 980 mV. When a large disturbance is induced like
a toilet flush, the device is able to return itself/the temperature to the ideal range around 980 mV.

4

Appendix 1: Calibration data with manual control to determine the comfortable ranges for the device to
maintain. It took ~150 seconds for the shower to heat up and for me to initially find the ideal shower
temp.

5

Timestamp Sensor Value [mV] Elapsed Time [s]

20:42:08 -> 979 149.5

20:42:09 -> 1016 150

20:42:09 -> 1012 150.5

20:42:10 -> 1018 151

20:42:10 -> 1000 151.5

20:42:11 -> 999 152

20:42:11 -> 992 152.5

20:42:12 -> 1005 153

20:42:12 -> 1005 153.5

20:42:13 -> 1005 154

20:42:13 -> 1017 154.5

20:42:14 -> 992 155

20:42:14 -> 1016 155.5

20:42:15 -> 1014 156

20:42:15 -> 1000 156.5

20:42:16 -> 1005 157

20:42:16 -> 1012 157.5

20:42:17 -> 1005 158

20:42:17 -> 996 158.5

20:42:18 -> 1005 159

20:42:18 -> 1004 159.5

20:42:19 -> 992 160

20:42:19 -> 1005 160.5

20:42:20 -> 997 161

20:42:20 -> 1004 161.5

20:42:21 -> 992 162

20:42:21 -> 1007 162.5

20:42:22 -> 976 163

20:42:22 -> 990 163.5

20:42:23 -> 1006 164

20:42:23 -> 984 164.5

6

20:42:24 -> 992 165

20:42:24 -> 987 165.5

20:42:25 -> 992 166

20:42:25 -> 979 166.5

20:42:26 -> 1018 167

20:42:26 -> 1006 167.5

20:42:27 -> 987 168

20:42:27 -> 992 168.5

20:42:28 -> 1009 169

20:42:28 -> 1001 169.5

20:42:29 -> 988 170

20:42:29 -> 994 170.5

20:42:30 -> 996 171

20:42:30 -> 984 171.5

20:42:31 -> 987 172

20:42:31 -> 986 172.5

20:42:32 -> 983 173

20:42:32 -> 979 173.5

20:42:33 -> 988 174

20:42:33 -> 985 174.5

20:42:34 -> 967 175

20:42:34 -> 984 175.5

20:42:35 -> 995 176

20:42:35 -> 979 176.5

20:42:36 -> 976 177

20:42:36 -> 932 177.5

20:42:37 -> 996 178

20:42:37 -> 984 178.5

20:42:38 -> 994 179

20:42:38 -> 967 179.5

20:42:39 -> 971 180

20:42:39 -> 989 180.5

20:42:40 -> 992 181

20:42:40 -> 997 181.5

20:42:41 -> 981 182

7

20:42:41 -> 992 182.5

20:42:42 -> 987 183

20:42:42 -> 983 183.5

20:42:43 -> 992 184

20:42:43 -> 970 184.5

20:42:44 -> 992 185

20:42:44 -> 982 185.5

20:42:45 -> 948 186

20:42:45 -> 987 186.5

20:42:46 -> 974 187

20:42:46 -> 979 187.5

20:42:47 -> 979 188

20:42:47 -> 982 188.5

20:42:48 -> 979 189

20:42:48 -> 979 189.5

20:42:49 -> 979 190

20:42:49 -> 979 190.5

20:42:50 -> 979 191

20:42:50 -> 978 191.5

20:42:51 -> 994 192

20:42:51 -> 983 192.5

20:42:52 -> 983 193

20:42:52 -> 987 193.5

20:42:53 -> 981 194

20:42:53 -> 994 194.5

20:42:54 -> 987 195

20:42:54 -> 987 195.5

20:42:55 -> 980 196

20:42:55 -> 987 196.5

20:42:56 -> 990 197

20:42:56 -> 994 197.5

20:42:57 -> 975 198

20:42:57 -> 974 198.5

20:42:58 -> 971 199

20:42:58 -> 971 199.5

Appendix 2: A summation of a few tests and a breakdown of what the ideal stepper response shall be.

8

20:42:59 -> 983 200

20:42:59 -> 971 200.5

20:43:00 -> 987 201

20:43:00 -> 988 201.5

20:43:01 -> 992 202

20:43:01 -> 975 202.5

20:43:02 -> 995 203

20:43:02 -> 994 203.5

20:43:03 -> 979 204

20:43:03 -> 971 204.5

20:43:04 -> 984 205

20:43:04 -> 971 205.5

20:43:05 -> 971 206

20:43:05 -> 993 206.5

20:43:06 -> 971 207

20:43:06 -> 1004 207.5

20:43:07 -> 980 208

20:43:07 -> 985 208.5

20:43:08 -> 990 209

20:43:08 -> 981 209.5

Mean 988.5123967

Std 13.73870184

Min warm 932

Max tepid 1018

All units in
millivolts

Test2
Max and Min
Shower Temps Degrees

Theoretical
degrees

 Max 1945 -60 -30

 Min 573 60 30

9

 Difference 1372 11.43333333 22.86666667 Volts/degree

Test3
Calibrating for
Ideal Temps

 Max 1018
Knob: Positive indicates
CW hotter

 Min 932
Knob: Negative indicates
CCW colder

 Mean 988.5123967

 Std 13.73870184
Stepper: Positive indicates
CCW colder

Stepper: Negative
indicates CW hotter

Conclusion

Desired
Range Max 1000

 Min 980

 Mean 990

Reaction

 Signal [mV]
Knob
[degrees]

Stepper
[degrees] rounded --------------->

really
rounded

HOT V < 600 -10 67.5 68 7 70

 600 <= V < 700 -8 54 54 5 50

 700 <= V < 800 -6 40.5 41 4 40

 800 <= V < 900 -4 27 27 3 30

 900 <= V < 980 -2 13.5 14 1 10

980 <= V <=
1000 0 0 0 0 0

1000 < V <=
1100 2 -13.5 -14 -1 -10

1100 < V <=
1200 4 -27 -27 -3 -30

1200 < V <=
1300 6 -40.5 -41 -4 -40

1300 < V <=
1400 8 -54 -54 -5 -50

COLD 1400 < V <= 10 -67.5 -68 -7 -70

Appendix 3: Thermistor Temperature Resistance Chart, R 25 = 10kΩ. This is from the thermistor data
sheet.

10

1650

COLDER
1650 < V <=
1900 20 -135 -135 -14 -140

COLDEST 1900 < V 30 -202.5 -203 -20 -200

Appendix 4: The sensor readings for the run in the video, all units are in millivolts. Note that the flush
occurs around 13:19:00.

11

Timestamp Sensor Value [mV]

13:14:06 -> 889

13:14:11 -> 967

13:14:17 -> 1021

13:14:22 -> 1044

13:14:29 -> 1044

13:14:36 -> 1050

13:14:41 -> 1044

13:14:46 -> 1041

13:14:52 -> 1008

13:14:57 -> 922

13:15:03 -> 910

13:15:08 -> 853

13:15:14 -> 846

13:15:21 -> 902

13:15:27 -> 924

13:15:33 -> 959

13:15:38 -> 979

13:15:44 -> 1021

13:15:51 -> 1075

13:15:57 -> 1108

13:16:04 -> 1120

13:16:11 -> 1080

13:16:16 -> 1041

13:16:22 -> 1005

13:16:34 -> 982

13:16:42 -> 979

13:16:49 -> 886

13:16:56 -> 924

13:17:02 -> 925

13:17:07 -> 932

13:17:13 -> 993

13:17:20 -> 969

12

13:17:27 -> 1012

13:17:35 -> 1021

13:17:43 -> 1062

13:17:52 -> 1084

13:18:00 -> 1070

13:18:05 -> 1098

13:18:12 -> 1035

13:18:20 -> 1018

13:18:29 -> 1026

13:18:38 -> 996

13:18:47 -> 979

13:18:54 -> 958

13:19:01 -> 933

13:19:07 -> 751

13:19:13 -> 593

13:19:20 -> 528

13:19:27 -> 709

13:19:35 -> 1127

13:19:40 -> 1353

13:19:46 -> 1513

13:19:53 -> 1586

13:19:58 -> 1495

13:20:05 -> 1251

13:20:12 -> 1018

13:20:18 -> 863

13:20:25 -> 768

13:20:32 -> 704

13:20:39 -> 713

13:20:45 -> 775

13:20:52 -> 856

13:20:59 -> 1018

13:21:06 -> 1131

13:21:13 -> 1236

13:21:20 -> 1250

13:21:26 -> 1105

Appendix 5: The Arduino Code. I do want to apologize that this is not in the “switch (state)” format, I
was not aware what exactly that meant until I saw Professor Stuart’s code in her example report, and by
then I had already written this.

13

13:21:33 -> 817

13:21:40 -> 657

13:21:47 -> 588

13:21:54 -> 528

13:22:01 -> 690

13:22:09 -> 859

13:22:16 -> 910

13:22:23 -> 971

13:22:30 -> 992

13:22:37 -> 930

13:22:44 -> 958

13:22:51 -> 971

13:22:58 -> 990

13:23:06 -> 1021

13:23:12 -> 1058

13:23:20 -> 979

/*
 Senior Project: Shower Temperature Control
 - Shower Temperature Control uses a thermistor (analog input A4) to check
temperature and then a stepper motor
 (digital outputs A0,A1,A6,A7) to adjust the shower temperature knob to maintain
an ideal temperature.
 - As of now, the stepper inputs and ideal temps are done by feel according to the
"Thermistor Data" Google Sheet
 "totals" tab.

 Thermistor
 - PANW103395-395
 -
https://www.digikey.com/en/products/detail/PANW103395-395/570-1458-ND/9084083?itemSe
q=345736221
 - 10 kOhms at 25C.
 - voltage readings for my particular shower can be found at the above google
sheet.
 - voltage to temperature relationship is not linear, so temp analysis will be done
via Gooogle Sheets and MATLAB.
 - Note: lower resistance values means hotter, higher values means colder. Same
goes for sensor voltage values.

14

 Stepper
 - NEMA-17 size - 200 steps/rev, 12V 350mA
 - https://www.adafruit.com/product/324
 - 200 steps per revolution.
 - Through trial and error, I determnined the stepper motor can safely rotate at 10
RPM. Safely in this context
 simply meaning there is sufficient torque and no slippage.
 - Due to the wiring, myStepper.step(X > 0) is CCW, myStepper.step(X < 0) is CW.
 - Code is largely from
 -
https://www.tutorialspoint.com/arduino/arduino_stepper_motor.htm#:~:text=Advertiseme
nts,rotates%20in%20discrete%20step%20angles.

 Motor Driver
 - DRV8833 Dual Motor Driver Carrier
 - https://www.pololu.com/product/2130
 - Note: the above driver has a max input voltage of 11.8V so I'm using a 5V 2A
source.

 Stepper-Shower-Knob-Relationship
 - This function has to be started when the knob is vertical.
 - The shower knob has ~120 deg of play (+-60 deg from vertical).
 - The stepper motor has ~810 deg of play (+-405 from vertical).
 - To be safe, I will let the stepper rotate +-300 deg from vertical, approximately
+-44 deg for the knob.
 - CCW stepper leads to COLDER
 - CW stepper leads to HOTTER

 NOTE: this sketch does not use a timer interrupt or delay to track the thermistor
readings. This is because the
 stepper function acts as a delay (the script stops running until the stepper
finishes moving), and this
 function only needs to track one input. For a more complex system, timer and
input interrupts should be
 used.

 ~ Rees Shephard Parker, Dec-07-2020 2:00am
*/

// the following is set-up for the stepper motor
#include <Stepper.h>

const int stepsPerRevolution = 200;
int currentStepperPosition = 0; //here, 0 degrees indicates vertical.
int stepperResponse = 0; //this will be determined later in the void loop.
// initialize the stepper library on pins A0,A1,A6,A7 for coil pins A,C,B,D
respectively.:
Stepper myStepper(stepsPerRevolution, A0,A1,A6,A7);

// the following is set-up for the thermistor.
// Note: thresholds are not defined here as there are multiple so that stepper
response does not create a
// positive feedback loop. Hysteresis thresholds are not necessary here.

15

const int sensorPin = A4; //our chosen analog input pin.
int sensorValue = 0; //will quickly be replaced.
int voltage = 990; //assume starting at nominal, will quickly be replaced.

void setup()
{
 // put your setup code here, to run once:

 // initialize the serial port:
 Serial.begin(9600);

 // stepper initialization:
 // set the speed at 5-10 RPMs:
 // Note: sometimes the stepper slips, sometimes it does not, regardless of RPMs,
but higher RPMs
 // do lead to more slippage.
 myStepper.setSpeed(5);
}

void loop()
{
 // put your main code here, to run repeatedly:

 // thermistor readings
 // read the value from the sensor: 0 is LOW, 4095 is HIGH
 sensorValue = analogRead(sensorPin);
 int voltage = map(sensorValue, 0, 4095, 0, 3300);

 // print commands are at the end of the loop.

 // the following "if" block is used to determine stepper response. See google
sheet for more details.
 if (voltage < 600)
 {
 stepperResponse = 70;
 }
 else if (voltage >= 600 && voltage < 700)
 {
 stepperResponse = 50;
 }
 else if (voltage >= 700 && voltage < 800)
 {
 stepperResponse = 40;
 }
 else if (voltage >= 800 && voltage < 900)
 {
 stepperResponse = 30;
 }
 else if (voltage >= 900 && voltage < 980)
 {
 stepperResponse = 10;
 }

16

 else if (voltage >= 980 && voltage <= 1000)
 {
 stepperResponse = 0;
 }
 else if (voltage > 1000 && voltage <= 1100)
 {
 stepperResponse = -10;
 }
 else if (voltage > 1100 && voltage <= 1200)
 {
 stepperResponse = -30;
 }
 else if (voltage > 1200 && voltage <= 1300)
 {
 stepperResponse = -40;
 }
 else if (voltage > 1300 && voltage <= 1400)
 {
 stepperResponse = -50;
 }
 else if (voltage > 1400 && voltage <= 1650)
 {
 stepperResponse = -70;
 }
 else if (voltage > 1650 && voltage <= 1900)
 {
 stepperResponse = -140;
 }
 else if (voltage > 1900)
 {
 stepperResponse = -200;
 }

 if (stepperResponse == 0)
 {
 // if temperature is within ideal range, wait half a second to not flood the
serial monitor.
 delay(5000);
 }
 else
 {
 // here, stepper needs to move and can move to modify temperature.

 // update position
 currentStepperPosition = currentStepperPosition + stepperResponse;

 // drive stepper, this functions like a delay().
 myStepper.step(stepperResponse);

 // by trial and error, my shower takes ~4 seconds to change temperature, so a 5
second delay
 // should ensure the next temperature reading is accurate to knob position.
 delay(5000);

17

 }

 // I had initially included a max stepper turn so that the stepper did not try to
overturn the knob,
 // but the stepper would sometimes slip or fail to turn which threw off the
position this script
 // thought it was at. I have left the max turn code below so that in the future it
could be re-
 // implemented if I got a stronger power source for the stepper.
 /*
 // track current stepper position.
 if (stepperResponse == 0)
 {
 // if temperature is within ideal range, wait half a second to not flood the
serial monitor.
 delay(5000);
 }
 else if ((currentStepperPosition + stepperResponse) >= -300 &&
(currentStepperPosition + stepperResponse) <= 300)
 {
 // here, stepper needs to move and can move to modify temperature.

 // update position
 currentStepperPosition = currentStepperPosition + stepperResponse;

 // drive stepper, this functions like a delay().
 myStepper.step(stepperResponse);

 // by trial and error, my shower takes ~4 seconds to change temperature, so a 5
second delay
 // should ensure the next temperature reading is accurate to knob position.
 delay(5000);
 }
 else
 {
 // if the knob/stepper have reached a max position and temeprature is still
outside nominal, just wait. Most
 // likely the system will have to be reset with the knob positioned better. This
situation should not occur.
 Serial.println("ERROR: stepper cannot rotate further.");
 delay(5000);
 }
 */

 // print the voltage reading so we can graph and determine temp later using above
google sheet.
 Serial.println(voltage);

 // the following print commands are for diagnostic purposes
 //Serial.print(voltage);
 //Serial.print(',');
 //Serial.print(stepperResponse);
 //Serial.print(',');

18

 //Serial.println(currentStepperPosition);
}

