
Car Autopilot System with Cruise Control
By Ye Song

Description of the product:

The cars’ auto driving system has always been a popular and interesting topic in modern times where’s

industry is highly developed. A system with constant speeding cruise control and automatic driving system can

not only bring considerable convenience to people's life, but also accelerate the development of human

technology to the greatest extent. The assignment 5 introduced the method of tuning motor with PI controller to

show some behaviors of rejecting environmental disturbances, which extremly simulated my interests about

wokring on a real car’s cruise controll system and added extra autopilot features by including frontal and back

object sensors. And besides that, since our microkits also contained one load cell, which made the entire

ideation much more interesting. Because I could possibly use the load cell as the representation of car’s

throttle with applied different level of stress-strain forces onto the load cell. The much harder I pressed the load

cell, the more power would be applied onto the motor(engine). All in all, the entire system included : esp32,

load cell, motor, motor driver, encoder and connector, 5V power supply, switch, object sensors, another DC

motor as representation of step motor (did not buy), and finally the HW-29 load cell connector. Above

introduced equipments would result a plant model which could be able to let the DC motor reject environmental

disturbances, use the load cell as throttle, sensed approaching front and back objects then making warning,

turning on the mock step motor to steer the axis with universal joints assembly to the left or right. Also if I

pressed the load cell when cruise control turned on mode, the motor would slowly decrease to zero when

released the load cell, just like a real car.

 Figure 1: General set up of the entire system Figure 2: Mock steering system with universal joints assembly

For a video example of the device’s operation and introduction, visist: https://www.youtube.com/watch?v=aXhMwYXHIbI&feature=youtu.be.

Electromechanical details:

Controller plant:

Picture Name Funtionality Quantity

Unknown
Manufacturer’s
Object Sensor

2 used corresponded sensors represent the frontal and back
one, which would sense any objects who are approaching
the sensor then sending the analog signal back to the micro
controller then resulting next set up behaviors of the plant.

2

75:1 Micro
Metal

Gearmotor
extended

Motor Shaft
with connector

The corresponded motor and connector set up was a mock
representation of car’s engine. And the encoder would
transferring counts into calculations inside of the arduino
sketch, resulted a calculated real-time output angular velocity
in rpm.

1

DRV8833 Dual
Motor Driver

Carrier

Giving the written car’s cruise control codes from arduino
skectch onto the board then to adjust the real time behavior
the motor to a satisfy level. Also taking encoder’s signals into
considerations.

1

Load Cell

Transferring the applied stress-strain forces to analog input
signal. The applied stress-strain forces were mock
representations of pushing back and forth onto the car’s
throttle then powering the engine(motor).

1

ESP-32 Micro
Controller

The core of this entire plant model. Controlling all sensors’
and motors’ bahavior, and receiving all the digital, analog
signals, then manipulating them as we wished.

1

Unknown
Manufacturer’s

DC Motor

This is just a mock model of the step motor (because I don’t
have one), which would control steering the frontal shaft left
and right.

1

Pushbutton
Switch

Taking control of turning on and off the motor plant. 1

HX711 Load
Cell Amplifier

Transferring the analog input signal received by the load cell
onto the micro controller for manipulating them later on.

1

Table 1: Table concluded all parts in the plant model

Frontal shaft assmebly:

Circuit & Coding:

Interesting but also challenging part of this plant model was the calibrating processes of load cell and object

sensors. Because I did not purhcase some real fancy motion or object sensors, those two poor ones I

disassembled from my older drone were really crapy and contained a large amount of noises, shown on the

below figure 5. Those two sensors also show up some random unexpected errors during tuning, but I had a

chance to make it work with a standable level. On the other hand, the system was supposed to contain at least

one step motor to move the its output shafts onto a specific angle so that it would be able to steer the axis left

or right. But the motor I used on it was also a relative cheap one disassembled from the same drone. It’s a DC

motor, so it is just the mock representation of the real step motor.

(1) Load cell and amptifier:

Load cell and its amptifier were representation of the throttle of real cars. Any small forces we applied

onto the rod’s surface would result changing it resistance and then transferring that amount of changes

to analog input signal so that the ESP-32 could read it and manipulate that signal(calibration process

see figure 7 at appendix A, page 1). After calibrations of it, it could be taken as the dutycycle output

value of the motor by ledcWrite function. So finally, it would work just like a throttle of the motor, how

hard you pressed it would give how much power output of the engine(motor).

(2) Object sensors:

The object sensors were taking a really important role of the autopilot plant model. They’re sensing the

front or back safeness. Any approaching objects would result a change of analog input signal to the

corresponded ESP-32 pin. Then the wrriten sketch would give decisions on what action the plant would

do for the next step, either warning or steering the front shaft to the nearest safe lane.

(3) Mock step motor:

Mock step motor was simulating the steering system of the frontal shaft. It would be triggered when any

objects are approaching the rear side of the plant. Then if there isn’t any object sensed in the front, the

mock step motor would steer the plant to the nearest safe lane(left or right).

(4) PI controller:

PI controller has no physical phenomenon presenting except rejecting the environmental disturbances

and system noises. It is a written script inside of arduino sketch. General open loop control would not

show any behaviors of rejecting the environmental disturbances or noises of the system. But PI

controller would take those two factors into calculations and considerations. Just acting like a regular

car cruise control which would apply more torque when facing rocks and hills on the road.

Figure 4: Circuit diagram of the plant model without shaft assembly Frigure 5: Calibration plot of the object sensor

Finite State machine:

The entire plant’s behavior was mainly controlled by the ESP-32 and correlated various sensors. Turning on

the switch back and forth would give a signal of cruise control and motor operation, ON and OFF. When the

switch was turned on, the plant would act pretty normal untill any additional forces were applied onto the load

cell. It’s just like you stepped on the gas pedal of your car when it was running at cruise mode on(see figure 8

at appendix A, page 1). The car would accelerate or decelerate, changing along with how hard you pressed

the load cell(gas pedal). But the interesting point of it is when you release the load cell, the motor would slowly

decrease to zero power, just like a regular car. Another point, when the normal cruise mode was on, if you

move some object really close to the front object sensor, the frontal state would turn into HIGH. At this

condtion, if the back object sensor also sensed some objects were approaching to the model, the monitor

would show up “Front and back collision detected, please switch lane or protecting yourself with a proper

action”. On the contrary, if the rear object sensor did not sense anything at all, the entire plant would just make

the motor slowly decrease to zero power output, for preventing hitting the frontal sensed object, which either

could be a car or a rock. Now trace all back to the normal cruise control mode on state. If the back sensor got

actived and front object did not sensed anything at all, the screen would also show up a warning that telling

you which your car detected something is approaching to your rear(see figure 5 in the previous page). As a

certain time going by, the system would make the choice for you, which including turning on the step motor,

dragging the spring loaded on the frontal shaft, then twisting the universal joint(front axis) to nearest safe

lane(left or right). Since we had already concluded the situation of both sensor actived mode at the other if

statement we setup, so it won’t be necessary to do that again here. Those should work just fine, like a real

autopilot car’s system.

Figure 6: Sample FSM diagram of the entire autopilot plant model

Appendix A: Figures

Figure 7: Plot of digital output versus weight with errorbar for test 1-5 on load cell.

Equation of the best fit line is shown at the bottom right

Figure 8: Plot of digital output versus time for both, facing disturbances,

and without disturbances rising and steady states

Appendix B: Arduino Sketch

#include <ESP32Encoder.h>
#include "HX711.h"
ESP32Encoder encoder2;
unsigned long encoder2lastToggled;
#define BUTTON_PIN 21
#define ENCODE_PINA 32
#define ENCODE_PINB 14

#define MOTOR_PIN0 27
#define MOTOR_PIN1 33
#define motorsm 15

#define FREQ 12000
#define RESOLUTION 8
#define LED_CHANNEL0 0
#define LED_CHANNEL1 1

#define FEEDBACK_PERIOD 50000

#define DEBOUNCE 120
hw_timer_t * timer = NULL;
volatile SemaphoreHandle_t timerSemaphore;
portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

int memc;
int dutyCycle_state1 = 0;
int reading = 0;
int front = 200;
int back = 200;
boolean loadcellstate = 0;
boolean state = 0;
const int LOADCELL_DOUT_PIN = A4;
const int LOADCELL_SCK_PIN = A5;
const int objectsensor_front = A1 ;
const int objectsensor_back = A2;
volatile int errorSum = 0;
volatile int velocity = 0;
volatile int error = 0;
volatile int velGoal = 0;
volatile int counts = 0;
volatile int buttonTimer = 0;
volatile int buttonTimer_last = 0;
volatile int memt = 0;
volatile int meme = 0;
volatile int memr = 0;
volatile int memd = 0;
volatile int memb = 0;
volatile float kp = 1.5;
volatile float ki = 0.015;
volatile boolean buttonPressEvent = false;
HX711 scale;

void IRAM_ATTR onTimer() {
 portENTER_CRITICAL_ISR(&timerMux);
 counts = encoder2.getCount();
 velocity = -(((memc - counts)*60000)/45.486);
 error = abs(velGoal - velocity);
 portEXIT_CRITICAL_ISR(&timerMux);+
 xSemaphoreGiveFromISR(timerSemaphore, NULL);

 memc = counts;
 memt = memt + 1;
 meme = meme + (error * 0.00008333);
 memr = reading;
 memd = dutyCycle_state1;
}

void setup() {
 Serial.begin(115200);
 scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(BUTTON_PIN, INPUT);
 pinMode(MOTOR_PIN0, OUTPUT);
 pinMode(MOTOR_PIN1, OUTPUT);
 pinMode(ENCODE_PINA,INPUT_PULLUP);
 pinMode(ENCODE_PINB,INPUT_PULLUP);
 pinMode(objectsensor_front,INPUT);
 pinMode(objectsensor_back,INPUT);
 pinMode(motorsm, OUTPUT);

 attachInterrupt(digitalPinToInterrupt(BUTTON_PIN), buttonIsPressed, RISING);
 ledcSetup(LED_CHANNEL0, FREQ, RESOLUTION);
 ledcSetup(LED_CHANNEL1, FREQ, RESOLUTION);
 ledcAttachPin(MOTOR_PIN0, LED_CHANNEL0);
 ledcAttachPin(MOTOR_PIN1, LED_CHANNEL1);

 ledcWrite(LED_CHANNEL0, 0);
 ledcWrite(LED_CHANNEL1, 0);
 digitalWrite(LED_BUILTIN, LOW);

 timerSemaphore = xSemaphoreCreateBinary();
 timer = timerBegin(0, 80, true);
 timerAttachInterrupt(timer, &onTimer, true);
 timerAlarmWrite(timer, FEEDBACK_PERIOD, true);
 encoder2.attachFullQuad(ENCODE_PINA, ENCODE_PINB);
}

void loop() {
 switch (state) {
 case 0:
 Service0();
 if (memd > 0) {
 memd = memd - 5;
 delay(500);
 }
 else {
 memd = 0;
 }
 //front = analogRead(objectsensor_front);
 //back = analogRead(objectsensor_back);
 //if (back > 30 && front >= 200) {
 //Serial.println("Warning: Back and front collisions dectected, please take
cover.");
 //}
 if (buttonPressEvent == true) {
 state = 1;
 Service1 ();
 buttonPressEvent = false;
 }

 break;
 case 1:
 front = analogRead(objectsensor_front);
 back = analogRead(objectsensor_back);
 if (scale.is_ready()) {
 reading = scale.read();
 reading = reading/10000 + 120;
 if (reading > 205) {
 reading = 205;
 }
 velGoal = ((reading - 29.485)/(0.7766))*1000;
 }
 Service1();
 Serial.print(memt);
 Serial.print(",");
 Serial.print(velocity);
 Serial.print(",");
 Serial.print(velGoal);
 Serial.print(",");
 Serial.println(dutyCycle_state1);
 if (((memr - reading) < -5) && memr!=0 && memr!=117) {
 loadcellstate = 1;
 }
 if (loadcellstate == 1 && reading == 117) {
 loadcellstate = 0;
 state = 0;
 Service0();
 reading = 0;
 buttonPressEvent = false;
 }
 if (front >= 300) {
 if (back == 0) {
 loadcellstate = 0;
 state = 0;
 Service0();
 reading = 0;
 buttonPressEvent = false;
 }
 }
 if (back > 100) {
 if (front < 200) {
 Serial.println("Warning: Back collision dectected, try to switch lane.");
 digitalWrite(motorsm,HIGH);
 delay(500);
 digitalWrite(motorsm,LOW);
 }
 }
 if (buttonPressEvent == true) {
 state = 0;
 Service0();
 reading = 0;
 buttonPressEvent = false;
 }
 break;
 default:
 timerAlarmDisable(timer);
 ledcWrite(LED_CHANNEL0, 0);
 ledcWrite(LED_CHANNEL1, 0);
 digitalWrite(LED_BUILTIN, LOW);

 delay(500);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(500);
 break;
 }
}

void Service0() {
 digitalWrite(LED_BUILTIN, LOW);
 timerAlarmDisable(timer);
 ledcWrite(LED_CHANNEL0, memd);
 ledcWrite(LED_CHANNEL1, 0);
 memt = 0;
}
void Service1() {
 digitalWrite(LED_BUILTIN, HIGH);
 timerAlarmEnable(timer);
 dutyCycle_state1 = reading;
 if (velocity < velGoal) {
 dutyCycle_state1 = kp * error + (kp * ki * meme);
 dutyCycle_state1 = ((0.7766 * (dutyCycle_state1))/1000) + 29.485;
 if (dutyCycle_state1 > 205) {
 dutyCycle_state1 = 205;
 }
 ledcWrite(LED_CHANNEL0,dutyCycle_state1);
 ledcWrite(LED_CHANNEL1,0);
 }
 else if (velocity >= velGoal) {
 if (dutyCycle_state1 > 205) {
 dutyCycle_state1 = 205;
 }
 ledcWrite(LED_CHANNEL0, dutyCycle_state1);
 ledcWrite(LED_CHANNEL1, 0);
 }
}

void buttonIsPressed() {
 buttonTimer = millis();
 if ((buttonTimer - buttonTimer_last) > DEBOUNCE) {
 buttonPressEvent = true;
 buttonTimer_last = buttonTimer;
 }
}

