
Humidifier Assistant Fan
By Ognyan Stefanov

PRODUCT DESCRIPTION

During the colder seasons of the year, the air in my room can get very dry (especially if I turn on the

heater). To accommodate for the dry air, I recently purchased an air humidifier. When I leave the

humidifier on during the night, I no longer suffer from dry throat in the mornings. However, one of the

issues with the humidifier is that it causes water droplets to collect on the surface of my wooden desk.

Even when I place the humidifier on the edge of the desk, the ejected vapor still falls straight down on my

desk and condensates. In the attempt to come up with an application for my micro-kit components, I had

the brilliant idea of placing a small fan behind the vapor exhaust of the humidifier. The intended purpose

of the “Humidifier Assistant Fan” is to blow the vapor exhaust away from my desk so that the vapor no

longer condensates on my desk. The limited supplies, tools, and financial resources compromise the

functionality of the “Humidifier Assistant Fan”, but the product still serves as an effective proof of

concept. Future designs will build off this prototype without having to suffer from stringent limitations.

\

Figure 1: humidifier alone (left); humidifier with “Humidifier Assistant Fan” (right)

ELECTROMECHANICAL DETAILS

Fan: The fan was constructed using a water bottle cap, flashcards, and hot glue. The fan blades are made

from layered flashcards and angled in a way such that clockwise (CW) rotation causes air to blow

forward. The fan is connected to the shaft of the brushed DC motor (provided in our lab kit) using braid

jewelry. The braid jewelry was pressed and plastically deformed to offer substantial friction between the

shaft and fan drive. A friction fit was suitable for this application because very small loads (torques) are

imposed on the fan.

Housing: There are three housing distinct components of the “Humidifier Assistant Fan”. The first

component is the small, rectifying support (Figure 2.b) which clips on to the humidifier and holds the

device in the place. The small support also elevates the position of the fan so that there is enough

clearance between the humidifier and the fan blades. This component is made from layered flash cards

and hot glue. The second component is the tall backside support (Figure 3), which is responsible for

elevating the device to the same height as the vapor exhaust and further preventing the device from

moving. The backside support is attached to the back of the bread board via hot glue and built using

popsicle sticks, brass pins, and hot glue. The last housing component is the thin wooden board (Figure

2.a). The wooden board supports all the circuitry and the brushed DC motor; the motor is attached to the

ME102B – Fall 2020
Final Project

board via the motor mounting bracket. In addition, both the small and tall support are hot glued to the

wooden board.

Figure 2: (a) The image on the left is a close-up of the fan; note the braid jewlery. (b) The image on the right shows

the small support hot glued to the wooden board; the curved end clips on to the humidifier. The motor mount is

visible in both images (black).

Fan Control: The fan is turned ON by pressing the button on the circuit board (Figure 3). Once the fan is

ON, the rotational speed is adjusted via the potentiometer; turning the potentiometer CW increases the fan

speed.

Figure 3: Image of the electronic components of the “Humidifier Assistant Fan”. The button and potentiometer are

used to control the behavior of the fan. The tall support is seen hanging on the right.

Button

Potentiometer

Tall support

Braid Jewelry

Small support

Motor mount

Wooden board

(a) (b)

ME102B – Fall 2020
Final Project

CIRCUIT DIAGRAM

Figure 4: Diagram of the circuitry used to operate the “Humidifier Assistant Fan”.

FINITE STATE MACHINE

The machine behavior of the “Humidifier Assistant Fan” is straightforward. The two operating machine

states are the fan not spinning and the fan spinning. Switching between the two states is accomplished by

using a physical interrupt trigger. When the button is pressed, an interrupt is triggered such that the

Arduino code switches to a new case corresponding to a new state. For specificity, the complete Arduino

IDE code is available in Appendix I. While in the “Fan ON” state, the speed of the fan can be varied by

changing the duty cycle seen by the motor driver. Changing the duty cycle is accomplished by turning the

potentiometer, which in turn causes the ESP32 to interpret different values from the corresponding ADC

pin; potentiometer values are mapped from 0-4095 to 0-255. To ensure the fan is always spinning while in

the “ON” state, the duty cycle has a set lower limit. Open loop control is most suitable for this application

because the exact fan speed is not important. The user of the “Humidifier Assistant Fan” is only

concerned with blowing the vapor exhaust away from their desk; they can visually determine the

appropriate fan speed by inspecting the extent to which the vapor is displaced. A visual demonstration of

the finite state machine behavior is available in the video link attached below and in Figure 6.

Video Demonstration: [link provided by instructor]

* You will notice in the video that the “Humidifier Assistant Fan” fails to effectively displace the vapor

exhaust. The gearbox attached to the DC motor serves as a speed reducer, which in turn reduces the

rotational fan speed. Refer to “Limitations” for further discussion.

ME102B – Fall 2020
Final Project

Figure 5: Finite state diagram of the intended machine behavior

Figure 6: Display of machine behavior while system is ON

LIMITATIONS

One of the biggest limitations that interfered with the functionality of the “Humidifier Assistant Fan” is

the gearbox attached the brushed DC motor. I wanted to remove the gearbox from the DC motor so that

the motor shaft could spin faster (and consequently make the fan blow harder) but I did not have a

screwdriver small enough to remove the screws from the gearbox. In addition, mounting the motor to the

wooden board would have been more difficult without the gearbox. The provided mount was designed to

interface with the pre-existing gearbox. The other major limitation that hindered the functionality of the

“Humidifier Assistant Fan” was the fan design. Designing a fan out of hand cut materials for optimal air

displacement is challenging to say the least. Had I been allocated more time and resources, I would have

invested in a manufactured polymer based fan. The cooling fans for desktop computers would have been

a suitable choice.

Lower limit of

duty cycle

Upper limit

duty cycle

ME102B – Fall 2020
Final Project

APPENDIX I: ARDUINO CODE

* Disclaimer: the Arduino code below contains RPM measurements for testing purposes!

#include <ESP32Encoder.h>

ESP32Encoder encoder;

// encoder pins

const int encoderA = 14;

const int encoderB = 27;

// PWM specs

const int freq = 24000;

const int ledChannel = 0;

const int ledChannel2 = 1;

const int resolution = 8;

const int ledPin = 16; // motor input 1

const int ledPin2 = 18; // motor input 2

const int potPin = 33;

int potVal;

int dutyVal;

// button pin (ISR) variables

const int switchPin = 23;

volatile byte butState = false;

int state = 0;

// RPM variables

int lastTime = 0;

int lastCount = 0;

int currentTime = 0;

ME102B – Fall 2020
Final Project

int currentCount = 0;

int rpm = 0;

// timer ISR variables

volatile int interruptCounter;

hw_timer_t * timer = NULL;

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

// timer ISR for rpm calculation

void IRAM_ATTR onTimer() {

 portENTER_CRITICAL_ISR(&timerMux);

 interruptCounter++;

 portEXIT_CRITICAL_ISR(&timerMux);

}

void setup() {

 Serial.begin(115200);

 ESP32Encoder::useInternalWeakPullResistors=UP;

 pinMode(switchPin, INPUT_PULLUP);

 attachInterrupt(digitalPinToInterrupt(switchPin), togg, FALLING);

 timer = timerBegin(0, 80, true);

 timerAttachInterrupt(timer, &onTimer, true);

 timerAlarmWrite(timer, 100000, true);

 //timerAlarmEnable(timer);

 encoder.attachFullQuad(encoderA, encoderB);

 encoder.setCount(0);

 encoder.clearCount();

ME102B – Fall 2020
Final Project

 ledcSetup(ledChannel, freq, resolution); // configure LED PWM functionalitites

 ledcSetup(ledChannel2, freq, resolution); // configure LED PWM functionalitites

 ledcAttachPin(ledPin, ledChannel); // attach channel to the GPIO (pin 16) to be controlled

 ledcAttachPin(ledPin2, ledChannel2); // attach channel to the GPIO (pin 18) to be controlled

}

void loop() {

 switch (state) {

 case 0: // motor off

 Service0();

 if (butState == true){

 state = 1;

 butState = false;

 }

 break;

 case 1: // motor on

 potVal = analogRead(potPin);

 dutyVal = map(potVal, 0, 4095, 0, 255);

 // Limiting the duty cycle to 80% of its max value to

 // ensure the motor runs below its max continous operating current.

 if (dutyVal > 204) {

 dutyVal = 204;

 }

 // Limiting the lower limit of the duty cyle to ensure the motor

 // always spins when the fan is "ON".

 if (dutyVal < 150) {

ME102B – Fall 2020
Final Project

 dutyVal = 150;

 }

 Service1();

 if (interruptCounter > 0) {

 portENTER_CRITICAL(&timerMux);

 interruptCounter--;

 portEXIT_CRITICAL(&timerMux);

 currentTime = millis();

 currentCount = (int32_t)encoder.getCount();

 rpm = (currentCount - lastCount)*65.9/(currentTime - lastTime);

 Serial.print(rpm);

 Serial.print(" ");

 Serial.println(dutyVal);

 lastTime = currentTime;

 lastCount = currentCount;

 }

 if (butState == true){

 state = 0;

 butState = false;

 }

 break;

 }

}

ME102B – Fall 2020
Final Project

void Service0() {

 timerAlarmDisable(timer);

 ledcWrite(ledChannel,0);

 ledcWrite(ledChannel2,0);

}

void Service1() {

 timerAlarmEnable(timer);

 ledcWrite(ledChannel2,0);

 ledcWrite(ledChannel, dutyVal);

}

void togg(){

 static unsigned long last_interrupt_time = 0;

 unsigned long interrupt_time = millis();

 // If interrupts come faster than 150ms, assume it's a bounce and ignore

 if (interrupt_time - last_interrupt_time > 150){

 butState = true;

 }

 last_interrupt_time = interrupt_time;

}

