
ME 102B – Final Project

Jeremiah F Teofil

December 8, 2020

Line Follower Robot

Description of Product:

 A while ago, I visited an automobile factory, which I considered to be quite advanced.

Most operations were automated and handled by robots. I was particularly fascinated by their

line following robot, used to transport parts and materials. Inspired by that, I wanted to create a

similar line following robot, which can be commercially used by people in their homes or

offices. It would also be especially helpful to be used in places such as nursing homes or

hospitals. This product would assist in transporting different things from point A to point B. For

example, in nursing homes, this would assist workers in delivering food and drinks from the

kitchen to their patients, who may be confined to their beds. Additionally, because this robot is

not programmed to go about a particular path, but rather follow a pre-determined line, this allows

some flexibility for the users; Users can alter or change the path at any time, which is more

efficient than re-programming the robot. I believe that these types of products are not in the

market for these purposes, so it would be a good project to design a prototype and experiment

with such robot.

Mechanical Details:

The smart-car chassis was purchased online, which include the wheels and the 2 DC motors. I

also purchased the battery holder (4 x AA battery – 6V) to power the ultrasonic sensor and the

motors. The breadboard is glued on the top of car, which holds all the wiring and components

(switch, resistors, motor driver, microcontroller). The 3.7V LiPo battery also sits on top to power

the microcontroller and IR sensors when it is not connected to the USB cable. I soldered the wire

that came with the DC motors and battery box with the jumper cables to be able to use them on

the breadboard easily. The IR sensors are glued on the front of the car, with the sensors facing

the floor to detect the line and adjust the car’s position. The Ultrasonic sensor is also glued on

the front, with the sensors facing forward to detect obstacles and stop the robot if there are any.

ultrasonic
sensor motor driver

IR sensor b

switch

77

DC
3.7 V

Motors
Lito

←

77

microcontroller
>

4xAA
Battery

Circuit:

 This project does not go too complicated with the functions and may not implement every

aspect of motor control introduced in this class, but I had the chance to work with new

components: (1) IR sensor and (2) Ultrasonic sensor

(1) IR Sensor: for the IR sensor, I went ahead and bought 2 pieces at a relatively cheap

price online since it was not included in our lab kit. The component works for 3.3-5V

DC supply. This sensor is the primary component that will keep the robot on track.

Specifically, the IR sensor will detect white (floor) and black (line) differently; it

gives a high (1) signal when it detects the line, and low (0) when it detects the floor.

(2) Ultrasonic Sensor: for the ultrasonic sensor, it was included in our lab kit – HC-SR04

Ultrasonic Sonar Distance Sensor. Because this component runs on 5V, and 5V

power supply included is not a battery, I went ahead and also purchased a battery

holder (4 x AA battery – 6V) to run the sensor. This sensor is responsible for obstacle

detection, which stops the robot.

In addition to these components, I also bought a smart-car chassis along with wheels and 2 DC

motors to run the wheels. These parts were relatively cheap as well. The battery holder (4 x AA

battery – 6V) will also be used to run the motors. I had to solder the jumper cables to the wire

that came along with the DC motors and battery holder to be able to use them with the

breadboard. I also used the

switch (which was used in

earlier assignments) to

switch the robot between

idle and running state, and

also the 3.7V LiPo battery

included in the lab kit to

power the microcontroller

when disconnected from

the USB cable.

Finite State Machine:

 The behavior of this robot is relatively simple. It always starts on idle (off). When the

switch is pressed, it will move forward. There are 2 IR sensors attached on the front of the robot

(on the left and right). When the left IR sensor detects the line, it will turn left. Similarly, when

the right IR sensor detects the line, it will turn right. When both IR sensors detects the line, it

means that the robot has reached the end, and returns to the idle state. There is also an Ultrasonic

sensor on the front of the robot for obstacle detection. When it detects an obstacle, it stops the

motor for as long as the obstacle is still present. (Code on the last page)

Further Improvements:
 This product has lots of flaws. One thing I noticed which sometimes make the robot to go
out of path is the fact that the robot moves relatively fast. However, setting the speed to be lower
(by reducing PWM), the duty cycle does not provide enough power to start turning the wheels.
Also, the robot struggles to make sharp turns, which is why the path are rounded along the
corners. Sometimes, too, the IR sensor gives a false signal, causing the robot to turn in a certain
direction and go out of path. By improving the code, using better sensors, and adding more
components, the movement of the robot can be much smoother and follows the path better or
even detects the upcoming path and anticipate the direction.

Note on the video:
 For some reason, the 3.7V LiPo battery is causing the sensors to not work properly.
Using the USB cable gives a much better result after a few runs, which is why I used the USB
cable instead of the battery in the video

Code:
#include <NewPing.h>
#define lefts 39
#define rights 36

#define Button_Pin 32

int trigPin = 23; // Trigger
int echoPin = 15; // Echo
long duration;
long cm;
int T = 7;
NewPing sonar(trigPin, echoPin, 200);
long distance;

#define MotorA_Pin0 17
#define MotorA_Pin1 16

#define MotorB_Pin0 12
#define MotorB_Pin1 13

#define freq 5000
#define ledChannel1 1
#define ledChannel2 2
#define ledChannel3 3
#define ledChannel4 4
#define resolution 8

#define Debounce 200

boolean state = 0;
volatile boolean buttonPressEvent = false;

volatile int buttonTimer = 0;
volatile int buttonTimer_Last = 0;
volatile int currentmillis = 0;
volatile int lastmillis = 0;

void setup() {
 pinMode (Button_Pin, INPUT);
 pinMode (trigPin, OUTPUT); // Sets the trigPin as an OUTPUT
 pinMode (echoPin, INPUT); // Sets the echoPin as an INPUT
 pinMode (MotorA_Pin0, OUTPUT);
 pinMode (MotorA_Pin1, OUTPUT);
 pinMode (MotorB_Pin0, OUTPUT);
 pinMode (MotorB_Pin1, OUTPUT);
 pinMode (lefts,INPUT);
 pinMode (rights,INPUT);

 attachInterrupt(digitalPinToInterrupt(Button_Pin), buttonIsPressed, FALLING);

 ledcSetup(ledChannel1, freq, resolution);
 ledcSetup(ledChannel2, freq, resolution);
 ledcSetup(ledChannel3, freq, resolution);
 ledcSetup(ledChannel4, freq, resolution);
 ledcAttachPin(MotorA_Pin0, ledChannel1);
 ledcAttachPin(MotorA_Pin1, ledChannel2);
 ledcAttachPin(MotorB_Pin0, ledChannel3);
 ledcAttachPin(MotorB_Pin1, ledChannel4);
 ledcWrite(ledChannel1, 0);
 ledcWrite(ledChannel2, 0);
 ledcWrite(ledChannel3, 0);
 ledcWrite(ledChannel4, 0);

 Serial.begin(9600);
}

void loop() {
 switch (state) {
 case 0:

 ledcWrite(ledChannel1, 0);
 ledcWrite(ledChannel2, 0);
 ledcWrite(ledChannel3, 0);
 ledcWrite(ledChannel4, 0);

 if (buttonPressEvent == true) {
 state = 1;
 buttonPressEvent = false;
 }
 break;

 case 1:
 distance = sonar.ping_cm();
 Serial.println(distance);

 if(digitalRead(lefts) == 0 && digitalRead(rights) == 0){
 ledcWrite(ledChannel1, 0);
 ledcWrite(ledChannel2, 200);
 ledcWrite(ledChannel3, 200);
 ledcWrite(ledChannel4, 0);
 }

 if(digitalRead(lefts) == 0 && digitalRead(rights) == 1){
 ledcWrite(ledChannel1, 180);
 ledcWrite(ledChannel2, 0);
 ledcWrite(ledChannel3, 200);
 ledcWrite(ledChannel4, 0);
 }

 if(digitalRead(lefts) == 1 && digitalRead(rights) == 0){
 ledcWrite(ledChannel1, 0);
 ledcWrite(ledChannel2, 200);
 ledcWrite(ledChannel3, 0);
 ledcWrite(ledChannel4, 180);
 }

 if(digitalRead(lefts) == 1 && digitalRead(rights) == 1){
 state = 0;
 }

 if(distance > 1 && distance < 10){
 ledcWrite(ledChannel1, 0);
 ledcWrite(ledChannel2, 0);
 ledcWrite(ledChannel3, 0);
 ledcWrite(ledChannel4, 0);
 }

 if (buttonPressEvent == true) {
 state = 0;
 buttonPressEvent = false;
 }
 }
}

void buttonIsPressed() {
 buttonTimer = millis();
 if (buttonTimer - buttonTimer_Last > Debounce) {
 buttonPressEvent = true;
 buttonTimer_Last = buttonTimer;
 }
}

