
Haptic Mouse Bungee

Eric Wang

December 8, 2020

Background/Product Description

Recently, I have noticed that my gaming mouse’s braided USB cable frequently catches on
nearby objects or the edge of my mousepad since my desk is often cluttered. Mouse bungees
attempt to solve this problem by securing the mouse wire on an elastic platform (fig. 1).
However, I find that these wired mouse accessories are unwieldy to use because they are
designed to apply a larger restoration force the further the mouse is dragged away from
the bungee. Furthermore, the spring’s equilibrium angle and stiffness cannot be adjusted
to account for mouse location bias. Overall, these factors fail to replace intermittent cable
snags with decreased resistance (as if the mouse were wireless), but instead make the user
fight against an uncomfortable elastic force. My haptic mouse bungee (fig. 2) is designed
to solve these issues by using motorized feedback to simulate a ratcheted spring, allowing
the device to adjust its desired position based on proprioceptive feedback and center the
”spring’s” equilibrium angle to best suit the mouse’s current position. In addition, it gives
the user the option to easily alter the effective virtual spring stiffness.

Figure 1: Conventional Mouse Bungee Figure 2: Haptic Mouse Bungee

1



Electromechanical Design

Figure 3: Main Body Figure 4: Bungee

This prototype is made from lab kit elements, VEX robotics structural pieces, as well as
scavenged household components. The added VEX parts include hole-punched aluminum
sheet metal and C-channels, threaded hex screws, keps nuts, steel standoffs, zip-ties, screw-in
collars, steel square-crossection axles, and gears.

Main Body: The main body of the device contains the circuitry and provides a rigid
interface for the motor housing and the breadboard (fig. 3). Power for the actuator is
supplied through a 5V connector and power for the microcontroller is done via USB, since
this device is primarily used in conjunction with a computer mouse. A button switch and
potentiometer are provided on the right for the user to switch between ”unlocked” and
”locked” states (explained in FSM section) and adjust spring stiffness.

Bungee: A direct drive transmission was chosen over a geared or linkage transmission
for two reasons: (1) proprioceptive feedback requires minimal backlash and friction and (2)
a linkage would produce a variable mechanical advantage that is dependent on crank angle
and would make it difficult to simulate a linear spring. A counterweight is added to counter
the large lever arm so that the motor does not require a feedforward torque to fight gravity.
The clip holds a mouse cord in place at the end of the lever.

Circuit

The circuit contains three peripheral sensors (button switch, potentiometer, and rotary en-
coder) and one actuator (Pololu 2215 motor) which is powered by a 5V power source. A
description of the circuit components is as follows:

• button switch: The switch is connected to a GPIO digital input with a pullup resistor.
The pin is programmatically tied to an interrupt so that the embedded system does
not need to constantly check the state of the switch.

2



• potentiometer: The potentiometer is connected to an Analog-to-Digital (ADC) con-
verter pin which converts the analog voltage across the variable resistor to a digital
signal. One end of the resistor is connected to the 3V pin.

• rotary encoder: The encoder, like the potentiometer is powered via the microcon-
troller’s 3V pin. The two channels are connected to separate GPIO input pins each
with 45kΩ pullup resistors.

• motor driver/motor: Unlike the auxiliary powered components, the motor is pow-
ered by the 5V power supply and controlled via pulse width modulation (PWM)
through the motor driver, which contains an H-bridge so that it is backdrivable.

Figure 5: Circuit Diagram

Finite State Machine

The heart of this project lies within the integration of feedback with the mechanical design to
produce interactive haptic behavior. There are two states - ”locked” and ”unlocked” which
are toggled by depressing the switch. The ”locked” state fixes the equilibrium position of
the spring, notated as θdes, and acts like a pure spring damper. The ”unlocked” state allows
the equilibrium position of the spring to change if an external torque causes the motor to
exert more than 70% PWM for ∼150ms. This indicates that the user is tugging at the mouse
unnecessarily and θdes shifts to the current angle θ. Thus, in the ”unlocked” state, the device
acts as a spring loaded ratchet. The finite state diagram is shown below:

3



Figure 6: Finite State Diagram

An example of this ratchet behavior is shown below. The red line indicates the angle of
the bungee, θ and the blue line indicates the θdes. The shaded blue regions show the time
intervals at which the PWM supplied by the motor exceeds 70%, causing the integral variable
”ie” to increment. Once ”ie” exceeds a threshold, θdes = θ, making the ratchet perform one
step. While this is occurring, the PD controller produces a local spring behavior in the
region about θdes and this can be shown around 8s, where the measured angle overshoots
and settles at some steady state value.

Figure 7: Ratchet Behavior

4



Appendix I: Arduino Code

1 #include <ESP32Encoder.h>
2 // sensor and output pins
3 #define b1 21
4 #define b2 17
5 #define buttonInput 16
6 #define ea 18
7 #define eb 19
8 int sensorPin = A2;
9

10 // constants
11 int debounce = 100;
12 struct Button {
13 const uint8_t PIN;
14 bool pressed;
15 };
16 Button button1 = {buttonInput, false};
17 double t_∆ = 0.01;
18 double RPM_per_tick = 0.396/360*60/t_∆;
19 double tick_per_degree = 910/360;
20 hw_timer_t * timer = NULL;
21 ESP32Encoder encoder;
22 float kp = 4;
23 float ki = kp*0.02;
24 float kd = kp/3;
25 float ie_max = 300;
26 int shiftPwm = 170;
27
28 // variables
29 int sensorValue = 0;
30 int resistance = 0;
31 int pwm = 0;
32 unsigned long timeM;
33 int counter = 0;
34 unsigned long count = 0;
35 double rot_speed = 0;
36 int ticks = 0;
37 bool toPrint;
38 float w_des = 0;
39 float th_des = 0;
40 int effort = 0;
41 float ie = 0;

5



42 float dp = 0;
43 float di = 0;
44
45 // Timer interrupt for updating encoder counter and ...

integral error
46 void IRAM_ATTR onTimer(){
47 // updates rotational speed
48 rot_speed = (double)(encoder.getCount()-ticks)*RPM_per_tick;
49 // updates position
50 ticks = encoder.getCount();
51 // updates integral error
52 if (abs(th_des-ticks) > shiftPwm/kp) {
53 ie = ie + abs(th_des-ticks);
54 } else {
55 ie = 0;
56 }
57 // saturates integral error
58 ie = min(ie, ie_max);
59 toPrint = true;
60 }
61
62 // Interrupt function called when switch is depressed
63 void IRAM_ATTR isr() {
64 // checking debounce condition
65 if (millis() - timeM > debounce) {
66 button1.pressed = !button1.pressed;
67 timeM = millis();
68 }
69 }
70
71 // Interrupt function for encoder ticks
72 void IRAM_ATTR isrE() {
73 // increments counter each time interrupt is called
74 counter++;
75 }
76
77 // Function to compute control effort
78 int control(float th_des, float ticks) {
79 effort = kp*(th_des - ticks) - kd*rot_speed;
80 effort = min(max(effort, -255), 255);
81 return effort;
82 }
83
84
85 void setup() {

6



86 // initializes serial
87 Serial.begin(115200);
88
89 // sets up PWM output pins
90 ledcAttachPin(b1, 1);
91 ledcSetup(1, 12000, 8);
92 ledcAttachPin(b2, 2);
93 ledcSetup(2, 12000, 8);
94
95 // sets button input
96 pinMode(buttonInput, INPUT_PULLUP);
97 attachInterrupt(button1.PIN, isr, RISING);
98 // sets encoder input
99 ESP32Encoder::useInternalWeakPullResistors=UP;

100 encoder.attachFullQuad(ea, eb);
101 encoder.setCount(37);
102 encoder.clearCount();
103
104 // sets potentiometer inputs and initial map
105 sensorValue = analogRead(sensorPin);
106 resistance = map(sensorValue,0,4095,0,1000);
107
108 // starts timers
109 timeM = millis();
110 timer = timerBegin(0, 80, true);
111 timerAttachInterrupt(timer, &onTimer, true);
112 timerAlarmWrite(timer, t_∆*1000000, true);
113 timerAlarmEnable(timer);
114
115 // initializes variables
116 pwm = 0;
117 counter = 0;
118 rot_speed = 0;
119 toPrint = false;
120 w_des = 0;
121 ie = 0;
122 }
123
124 void loop() {
125 // reads potentiometer value and maps it to PWM values
126 sensorValue = analogRead(sensorPin);
127 resistance = map(sensorValue,0,4095,0,1000);
128 // calling PI controller function
129 pwm = control(th_des, ticks);

7



130 // mapping potentiometer values to desired effective ...

stiffnesses
131 kp = map(resistance, 0, 1000, 10, 20);
132 ki = kp*0.02;
133 kd = kp/3;
134 // logic to account for negative pwm values
135 if (pwm > 0) {
136 ledcWrite(1, pwm);
137 ledcWrite(2, 0);
138 } else {
139 ledcWrite(1, 0);
140 ledcWrite(2, -pwm);
141 }
142
143 // main FSM logic
144 switch (button1.pressed){
145 case true:
146 // adaptive desired angle
147 if (ie == ie_max) {
148 th_des = ticks;
149 }
150 break;
151 default:
152 // locked state
153 ie = 0;
154 toPrint = false;
155 break;
156 }
157 switch (toPrint) {
158 case true:
159 // prints data to copy and paste into text file
160 Serial.print(millis());
161 Serial.print(" ");
162 Serial.print(String(th_des));
163 Serial.print(" ");
164 Serial.print(String(ticks));
165 Serial.print(" ");
166 Serial.print(String(rot_speed));
167 Serial.print(" ");
168 Serial.print(String(pwm));
169 Serial.print(" ");
170 Serial.print(String(kp));
171 Serial.print(" ");
172 Serial.println(String(ie));
173 toPrint = false;

8



174 break;
175 default:
176 break;
177 }
178 }

Listing 1: Full code implementation

Appendix II: MATLAB Processing Code

1 close all, clear all
2 %% Initialization
3 fileNames = {'Tuning.txt', 'Ratchet1.txt'};
4 dt = 0.01;
5 d_per_tick = 360/910;
6

7 %% Tests
8 data = load(fileNames{1});
9 t = data(:,1)/1000;

10 t = t - t(1);
11 th_des = data(:,2);
12 th = data(:,3);
13 w = data(:,4);
14 duty = data(:,5)/255*100;
15 figure, plot(t, th_des), hold on, plot(t, th), plot(t, duty);
16 xlim([min(t) max(t)]);
17 xlabel('time [sec]');
18 legend({'Desired Angle', 'Measured Angle', 'PWM'}, 'Location', 'SE');
19 title('Testing Behavior');
20

21 %% Rachet Tests
22 data = load(fileNames{2});
23 t = data(:,1)/1000;
24 t = t - t(1);
25 th_des = data(:,2)*d_per_tick;
26 th = data(:,3)*d_per_tick;
27 w = data(:,4);
28 duty = data(:,5)/255*100;
29 kp = data(:,6);
30 ie = data(:,7);
31 shadedRegion = find(ie > 0);
32 figure, plot(t, th_des), hold on, plot(t, th);
33 if ¬isempty(shadedRegion)
34 for ii = 1:length(shadedRegion)
35 ind = shadedRegion(ii);
36 patch([t(ind) t(ind)+dt t(ind)+dt t(ind)],[0 0 90 ...

90],'b','FaceAlpha',0.2,'EdgeColor','none');
37 end
38 end

9



39 xlim([min(t) max(t)]);
40 xlabel('time [sec]');
41 ylabel('angle [degrees]');
42 legend({'Reference Angle', 'Measured Angle'}, 'Location', 'SE');
43 title('Example of Ratchet Behavior');

Listing 2: processData.m

10


