
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021 1

Granular Resistive Force Theory Implementation
for Three-Dimensional Trajectories

Laura Treers, Cyndia Cao, and Hannah S. Stuart

Abstract—Modelling interaction forces as bodies intrude into
granular media is a longstanding challenge in the design and
control of machines that navigate and manipulate these highly
complex materials. Granular Resistive Force Theory, or RFT, is
a flexible, reduced-order model for predicting intrusion forces
on bodies in granular media. 2D RFT describes the forces on a
plate whose velocity and normal vectors lie in the same vertical
plane. We introduce a 3D RFT method that projects the total
velocity vector into two scenarios that can already be described
by 2D RFT, which allows us to extend the model into 3D
with minimal additional experimental characterization. We then
superimpose these independently calculated forces, weighted by
experimentally fit scaling factors, to determine the total force
on the plate. When applied to discretized convex hulls, this
method performs force estimates of arbitrary trajectories in 3D
space. The proposed formulation predicts forces experienced by
oscillating and circumnutating bodies, motions motivated by mole
crab burrowing and plant root growth respectively. This method
is well-suited to complement more complex computational tools,
such as Discrete Element Method. By expanding the application
of RFT to 3D scenarios, a broader set of real-world applications
can now be analyzed.

Index Terms—Dynamics, Contact Modeling, Methods and
Tools for Robot System Design

I. INTRODUCTION

COUNTLESS animal species, such as arthropods, mol-
lusks, plants and annelids, demonstrate amazing burrow-

ing and excavation abilities with complex three-dimensional
morphologies and behaviors. Robotic applications mimic bio-
logical mechanisms in order to penetrate [1]–[3] and locomote
[4]–[6] in granular media. However, they have yet to match the
ability of these organisms to manipulate granular media and
traverse underground with such dexterity. Potential uses for
these types of machines include geotechnical and agricultural
site characterization [7], remote exploration of sandy planets,
manipulation of manufacturing materials, construction and
excavation, and the development of biophysical models [8]–
[11]. Understanding interaction forces between machines and

Manuscript received: October, 15, 2020; Revised January, 9, 2021; Ac-
cepted January, 15, 2021.This paper was recommended for publication by
Editor Lucia Pallottino upon evaluation of the Associate Editor and Reviewers’
comments. This work was supported by and carried out at the University of
California at Berkeley. L. Treers is supported by a National Defense Science
and Engineering Graduate Fellowship through the Office of Naval Research
and a Berkeley Graduate Fellowship. C. Cao is supported by a NASA Space
Technology Research Fellowship 80NSSC19K1167. This work was supported
by an Early Career Faculty grant (80NSSC21K0069) from NASA’s Space
Technology Research Grants Program.

L. Treers, C. Cao and H.S. Stuart are with College of Engineering,
Mechanical Engineering Department, University of California at Berkeley,
CA USA ltreers@berkeley.edu

Digital Object Identifier (DOI): see top of this page.

granular media through predictive simulations can streamline
both mechanism design and control.

A. Background
Resistive force theory (RFT) – a general method utilized

for over 50 years [12], [13] – models interaction forces using
lumped empirical parameters in lieu of a constitutive model or
contact law. In 2009, a simplified RFT was developed for dry,
uniform granular materials in horizontal motion planes, and it
was demonstrated that resistive forces, i.e. forces imparted by
the substrate that oppose motion, scale with cross-sectional
area and are largely independent of intrusion speed at low
speeds [5]. Further studies demonstrated that similar principles
hold in other planes of motion [14], [15]. RFT in three-
dimensional (3D) space is defined as [15]:

F =
∫

ds
[

f⊥(v, t̂)n̂+ f‖(v, t̂)t̂
]

(1)

where f⊥ and f‖ are scaling factors, v is the element velocity
direction, and t̂ and n̂ are the tangent direction and normal
direction vectors of the element.

In practice, granular RFT typically utilizes penetrometry
tests across various substrate types, intruder plate orientations,
and intruder plate trajectories in order to characterize lumped
substrate properties. Eqn. 1 is often simplified to planar or
specialized trajectories in order to reduce the experimental
parameter space. In the horizontal planar formulation [15],
[16], changes in penetration depth are not considered. In
the vertical planar formulation [14], [17], the plate element’s
motion must lie in the vertical plane that contains its surface
normal. We present a closed-form method of implementing
granular RFT in 3D using penetrometry data gathered from
only these two horizontal and vertical planes, with the goal
of streamlining resistive lumped-parameter identification.

The desire to apply 3D granular RFT to engineering appli-
cations continues to grow. For a legged robot that walks on
extruded C-legs, Li et. al (2013) used RFT to predict the leg
curvature and rotation velocity that would produce the fastest
forward motion. However, this 2D RFT characterization is
insufficient to fully describe the force response of an arbitrary
3D body and motion, such as the complex leg motions of the
zebra-tailed lizard [18]. Research in the design of excavators
for unmanned construction systems has utilized an “improved
RFT” (or i-RFT) to model interaction mechanics with a 3D
bucket [19].1 A 2020 study on rover design and control applied

1The “i-RFT” model introduced by Tsuchiya et al. incorporates a correction
factor into the intrusion angle definition, which accounts for the angle of the
slope surface to better take into consideration surface mounding effects.
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a “quasi-3D RFT” to analyze forces on rover wheels sweeping
through granular media [20].2 These prior methods make
physical motion assumptions based on the specific application
such that they are ill-suited to other bodies and motions. Our
proposed method does not assume such constraints.

RFT only predicts forces on the intruder and cannot predict
behavior within the granular material itself. This is opposed
to the Discrete Element Method (or DEM), which solves
the equations of motion for every particle [21]–[24], and the
Material Point Method (MPM) which treats the substrate as
a continuum with a frictional yield criterion and plastic flow
[25], [26]. As such, granular RFT is subject to several limita-
tions. It does not account for localized jamming or unpacking
due to concave body geometries or substrate fluidization, and
it assumes relatively flat, homogeneous dry granular media.
In high-velocity scenarios (approximately >0.2 m/s), inertial
effects of the granular particles are non-negligible and a “Dy-
namic RFT” formulation can be implemented [17]; however,
the implementation we introduce in this paper is performed
with relatively slow motions (≤2.5 cm/s).

Despite these limitations, RFT’s low computational cost
makes it desirable for applications which benefit from fast,
high-level understanding of interaction forces and force distri-
butions. Depending on processing power and model simplifi-
cation, DEM and MPM simulation times can range from an
hour to several days or weeks, while RFT force calculations
have the potential to be computed in real time, depending
on the chosen spatial and temporal resolution. While RFT
lacks the high precision of DEM or MPM, it presents a
good approximation when speed is paramount. Therefore, RFT
is ideal for prototyping or performing initial studies before
investing more time into DEM or MPM analysis or building
a physical device. RFT is especially useful in narrowing large
parameter spaces to expedite the process of mechanism and
controller design.

B. Overview

Fig. 1 conceptualizes the proposed RFT implementation
framework. In Section II, we describe a method for estimating
the resistive forces on a plate penetrating into sand with any
orientation and trajectory via velocity decomposition. Section
III describes our experimental testbeds and procedures for
testing the efficacy of this method. In Section IV-A, lumped-
parameter scaling factors are characterized with a flat plate
element moving in the horizontal plane. The proposed RFT
method is then validated using a flat plate with various velocity
vectors in 3D in Section IV-B.

The principle of RFT superposition allows for the de-
composition of a 3D convex body into 2D plate elements
[26]. Simulation of convex 3D shapes is performed using
our RFT implementation by summing the resistive forces
acting on each plate element. The remainder of the results
demonstrate how this tool can be applied to curved shapes

2Shrivastava, et al. make the assumption that the direction of resistive
forces of each element in the horizontal plane are opposite to their velocity
vector, F j=-v j , stemming from the observation that the velocities of most
plate elements on a spinning wheel have directions nearly “in line” with the
normal vectors, i.e. n j ·v j > 0.5.
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Fig. 1. Proposed 3D RFT methodology. A visual representation of the
process for estimating intrusion forces using RFT, from planar force charac-
terization to summing the forces on all discretized plate elements on a 3D
body throughout its motion.

for analysis of burrowing mechanisms. We test the intrusion
of a curved 3D ellipsoid undergoing body pitch oscillation,
inspired by motions observed in the Pacific mole crab, in
Section IV-C and parametrically simulate circumnutations of
a 3D paraboloid during its 3D intrusion trajectory, inspired
by plant root behavior [27], in Section IV-D. As discussed in
Section V, this tool is well-suited to perform rapid studies to
understand robot design and control trends.

II. 3D RFT METHOD

We build upon previous principles of vertical 2D RFT,
which uses two angles (β ,γ) to describe the orientation and
velocity direction of a plate element, by introducing a third
independent angle (ψ). A plate element, j, shown in Fig. 2(A),
lies in Ei, the Newtonian frame, where E3 defines the vertical
axis to which gravity forces are aligned. An intermediate basis
ei is defined by a simple rotation about E3 such that the
projection of the plate normal n onto the horizontal plane E1-
E2 lies in the e2 direction. Thus, the intersection of the plate’s
surface and the horizontal plane E1-E2 aligns with e1. The
angle between n and e2 is parameterized by β . The plate has
velocity v and is assumed to have no angular velocity. The
velocity direction is characterized by parameter ψ , which is
defined as the angle between e2 and the projection of v onto
the horizontal plane E1-E2. Plate velocity v is decomposed
into two components: v1 and v23. The velocity vector is first
projected onto the e1 axis to form the component v1. The
component v23 is defined as v23 = v−v1, which places it in
the same vertical plane as the surface normal, denoted as e23.
The angle between v23 and e2 is defined as γ .

Following this decomposition, 2D RFT is applied in the e23
plane to produce reference force F̃23, while the term in the e1
direction is reference force F̃1, such that:

F̃1 = [αy (γ,β )e1] |z| δA (2)

F̃23 = [−αx (γ,β )e2+ αz (γ,β )E3] |z| δA (3)

where |z| is the depth of the element and δA is the infinitesimal
area of the element. The resistive coefficients αx and αz, which
are functions of β and γ , are defined in vertical 2D RFT
and empirically characterized [14].3 We compare two different
models for resistive coefficient αy:

3Note that our definition of the horizontal axis e2 is mirrored from 2D RFT,
hence the sign change in Eqn. 2.
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Fig. 2. 3D method angle definitions. (A) Depiction of plate element coordinate frames and angle definitions in 3D. An example total velocity is indicated,
and the dashed blue arrow indicates the projection of total velocity on the horizontal plane. (B) The plate element is viewed along the e2 axis, along with the
v1 component of velocity. (C) The same plate element is viewed along the e1 axis, resembling a 2D RFT analysis as presented in [14]. The velocity in this
plane, v23, is indicated.

• αy = αx(γ = 0,β = 0) reduces the need for new empirical
model fitting for easy adoption.

• A first order approximation of αy(γ,β ) yields αy(β ),
and provides more accurate estimates for F̃1 but requires
additional experimental characterization data.

The benefit of this decomposition is that it can charac-
terize the scaling effect on 2D RFT that occurs when both
components are present, such as when a penetrating object is
yawed about the vertical axis. We now introduce dimensionless
factors f1 and f23, which are functions of ψ and γ , in order
to weight and superimpose the two independent resistive force
calculations. We hypothesize that total force experienced by a
single plate element j can be calculated as

F j = F1, j +F23, j = f1(ψ,γ) F̃1 + f23(ψ,γ) F̃23. (4)

When ψ = 0◦ and v1 = 0, planar RFT holds such that f1 =
0 and f23 = 1. Conversely, when ψ = 90◦ and v23 = 0, all
motion lies in the e1 direction such that f1 = 1 and f23 = 0.
The empirical relationships of f1 and f23 with intermediate ψ

values are reported in Section IV-A.
The total force on a body is the sum of the resistive

forces over all infinitesimal plate elements, F = ∑F j. We only
include the elements which are beneath the substrate surface,
i.e. F j = 0 if z j > 0. We also impose the condition that F j = 0
if v j ·n j < 0 in order to remove the effect of elements which
are not pushing on the substrate. In past studies utilizing
RFT methods, this has been referred to as the “leading
edge hypothesis” because only the leading surfaces contribute
significantly to the total force [26]. In our formulation the
orientation vector e1 is not uniquely defined when β=0◦. When
this occurs, e1 is defined as the projection of the element’s
total velocity vector onto the E1-E2 plane. This assumption
introduces a discontinuity in the model as β approaches zero,
discussed in Section V.

III. MATERIALS AND METHODS

A. Penetrometry experimental setup

A 40 cm x 20 cm x 24 cm tank is filled to approximately
18 cm depth with 0.8 mm glass beads as substrate. Particles
are assumed to be approximately spherical and uniform in
diameter. A Universal Robot (UR-10) is used to penetrate

different objects into the glass beads with various orienta-
tions and trajectories. For plate characterization and validation
experiments, square steel plates (5.1cm x 5.1cm x 0.32cm)
are fixtured to the load cell, which is located at the end
effector of the robot arm. The plate is inserted in the substrate
with the velocity vector in the E2-E3 plane, aligned with the
longest edge of the tank. For oscillation and circumnutation
experiments, custom rigid bodies are attached, described in
detail in sections IV-C and IV-D. For all trials, six-axis force
and torque data are obtained from an Axia80 ATI load cell
with a sampling rate of 125 Hz. Between each penetration
trial, the substrate volume fraction is reset to a loose-packed
state by manually stirring the substrate for 5 seconds.4

A vertical plate element (β = 90◦) is translated in the hori-
zontal plane at a series of values of ψ in order to characterize
the force scaling relations f1 and f23. The force response takes
several centimeters of horizontal motion to reach a steady-
state plowing behavior, and the mean force in this steady-state
region over three trials is utilized for data analysis.

During validation trials, the plate is first yawed by ψ about
E3 and then tilted by β about e1. For horizontal trials, steady-
state plowing forces are averaged first during each trial, and
we compute the mean and standard deviation over three trials.
For cases in which there is vertical motion, the peak force
value is recorded at maximum depth of insertion. This depth
is estimated from the force values in e2 and E3 achieved
in the ψ=0 trial using values of α from Li et al. [14]; the
penetration depths that would produce the measured horizontal
and vertical forces are averaged to obtain the predicted depth.
This predicted depth is then used to normalize the measured
forces across the ψ values tested. Reported values and standard
deviations represent 5 separate penetrometry trials.

B. Numerical rigid body simulation structure

A discretized 3D model, e.g., “stereolithography” (STL)
format file, is imported into MATLAB for analysis. During
simulation, vertices from the STL file in Cartestian coordinate
space are indexed and grouped into triangles, using the MAT-
LAB function toolbox stlread. The desired trajectory of the

4In future work, this process can be made more consistent through the use
of a fluidizing bed, as in [15].



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

A DCB

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 30 60 90
 [deg]

0

2

4

6

8

Fo
rc

e 
[N

]

ψ 
Intrusion
velocity

ψ 

E3

E2
E1

Fig. 3. Horizontal RFT empirical characterization. (A) During horizontal characterization, ψ is varied while β and γ remain constant, where ψ = 0◦ when
the plate moves in the direction of its surface normal. (B) Measured plate forces when moving in the horizontal plane, |F1|,Raw and |F23|, show a nonlinear
relationship with ψ . To compensate for plate thickness, an approximation of force for the thin edge of the plate is subtracted from |F1|,Raw to estimate |F1|.
Normalized scaling factors (C) f1 and (D) f23 accordingly vary as a function of |v1|/|v| and |v23|/|v|, respectively. Solid curves represent fits to the data
using sigmoid functions.

body is specified, including both translational and rotational
components in 3D. The position of each triangle center is
calculated via a transformation of bases as defined in Fig.
2. Velocity of each triangle center is calculated as

v j = (r jR×ω) + vCOR (5)

where ω is the angular velocity of the body about its center
of rotation, and vCOR represents the velocity of the center of
rotation of the body. r jR represents the position of each triangle
center relative to the center of rotation. At each time step of
the simulation the parameters f1, f23, γ , β , and z are calculated
at the centroid of each triangle element.

The Fourier coefficients for generic media presented in [14]
are utilized to map the calculated β and γ to αx and αz
for a given element. As described by Li et. al, these generic
coefficients can be multiplied by a single scaling factor to tune
results to a specific granular media. Based on the average of
five vertical plate penetration experiments, we calculate the
scaling factor for our granular media to be approximately 0.33.
The magnitude and direction of force is computed for every
discretized element and summed.

IV. MODEL CHARACTERIZATION AND VALIDATION

A. Horizontal RFT relation for a plate

In order to establish the relationship between the force in e1
and e23 as a function of velocity direction, a set of experiments
is performed on a vertically-oriented plate element (β = 90◦)
translating in the E2 direction at a velocity of 1 cm/s. Because
γ = 0◦, the e1 and e23 components of velocity change as
|v1|/|v|= sin(ψ) and |v23|/|v|= cos(ψ); these values can be
calculated for arbitrary γ using vector projection. Experimen-
tally, the angle ψ is varied in increments of 5◦ while forces
are measured. The measured |F1|,Raw component approaches
a maximum value of 1.5 N at ψ = 90◦. |F23| is comparatively
larger over most values of ψ , with a maximum of 5.8 N at
ψ = 0◦, and shows a sharp drop-off at values of ψ > 70◦.

The plate used in this experiment has a non-negligible thick-
ness, which becomes most significant in the e1 direction when
ψ→ 90◦. We approximate this effect by applying Eqns. 3 and
4 to estimate F23 force for the thin edge’s face, assuming that
its tangential F1 component is negligible compared with F23 of
the primary plate’s surface. This approximation is subtracted

from the measured force |F1|,Raw, such that the maximum
|F1| is 0.9 N, or 60% of |F1|,Raw. Force magnitudes are
plotted as a function of ψ in Fig. 3(B). As ψ → 90◦, the
reverse face of the plate will also contribute force in |F1|.
We currently neglect this reverse-face effect assuming that the
shape of f1(ψ,γ) will not change significantly.

The scaling factor f1 is defined as the magnitude
of F1 normalized by its magnitude when v = v1, i.e.
|F̃1| = |F1(ψ = 90◦,γ = 0◦)|. Likewise, f23 is the mag-
nitude of F23 normalized by its magnitude when v =
v23, i.e. |F̃23| = |F23(ψ = 0◦,γ = 0◦)|. Therefore, f1(ψ,γ) =
|F1(ψ,γ = 0◦)|/|F̃1| and f23(ψ,γ) = |F23(ψ,γ = 0◦)|/|F̃23|;
these scaling relationships are plotted against normalized ve-
locity components in Fig. 3(C)-(D). The resulting trends are
consistent with those found in [16], in which horizontal plate
characterization data shows anisotropy. We fit the normal-
ized force data against the normalized velocity with sigmoid
functions constrained to the points (0,0) and (1,1). The data
follows the form |F1|= A1 ∗ tanh(A2 ∗ |v1|/|v|−A3)+A4 and
|F23| = B1 ∗ (B2 ∗ |v23|/|v| −B3)+B4 , where Ai and Bi are
fitting terms. Our fits produced coefficients A1 = 0.44, A2 =
3.62, A3 = 1.61, A4 = 0.41, B1 = 1.99, B2 = 1.61, B3 = 0.97,
and B4 = 4.31.

B. Validation using plate elements

In order to test the ability of this 3D granular RFT method to
predict insertion forces, plates are translated through granular
media in a variety of orientations and insertion angles at a
speed of 1 cm/sec. We introduce an alternative velocity pa-
rameter φ to reflect the constraints of our experimental setup,
where φ represents the intrusion angle of the total velocity
relative to horizontal, and γ can be determined geometrically
as depicted in Fig. 4, such that tan(γ) = tan(φ)/cos(ψ). The
angle ψ is varied in increments of 10◦, from 0◦ to 90◦ with
three different values of φ (0◦, 30◦, 60◦) and plate angle β

(30◦, 60◦, and 90◦). Fig. 5(A) shows the experimental results,
alongside the simulation predictions for both proposed models
of αy. The rods attaching the plate element to the robot end
effector, as well as the plate edges, are not taken into account.

Fig. 5(B) depicts the median deviation between the models
and average measured force over all tested values of ψ , plotted
for each combination of β and φ . Error values are normalized
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Fig. 4. Plate validation experiments. (Left) The experimental setup used
for validation experiments consisting of a UR10 robot and plate element
attachment, showing the world frame. (Right) During validation experiments,
total velocity is fixed in the E2-E3 plane represented in blue, such that we
parameterize it with intrusion angle φ in the world frame. The grey plane
represents the plate element in the case when β = 0 and ψ > 0. The green
plane represents the e23 plane. Velocity projection v23 as well as velocity
orientation angle γ lie in this plane.

against the total force magnitude predicted at each value of ψ

to present relative error values. Because dividing by the force
value at ψ = 0◦ or 90◦ leads to a singularity in some cases, the
median value over all values of ψ is displayed. The median
relative error ranges between 1.9 and 34.1 percent for |F1|
when αy = αx(0,0), and between 1.2 and 6.5 percent for |F1|
when αy(β ). The median relative error ranges between 1.5
and 17.2 percent for |F23| when αy = αx(0,0), and between
1.5 and 18.8 percent for |F23| when αy(β ); the dependence of
|F23| relative error on αy is caused by a change in the total
predicted force magnitude. Because there is so little change
in |F23| error between the two αy models, only the case when
αy = αx(0,0) is shown.

Error in the |F1| model that arises when using the constant
scaling factor αy = αx(0,0) is most pronounced at β = 90o

and γ = φ = 0◦; given that the term f1 is fit to the data under
this condition, the predominant source of this error is αy and
is alleviated when using αy(β ). |F1| error for both models is
pronounced when ψ > 70◦ for (β=30◦, φ=0◦) and (β=60◦,
φ=0◦), where the experimental data is non-monotonic. Error
in |F23| is maximized at (φ=60◦, β=90◦). Note that αx and
αz are based on prior work, and not re-characterized on our
testbed. Observed errors may be influenced by compliance in
the supporting structure of the cantilevered test plate, because
these members are thin in order to reduce their resistive forces.

Empirical resistive coefficients αy are estimated from the
data in Fig. 5(A) using Eqn. 2 and 4, and plotted over β and γ

in Fig. 6. Results over β are consolidated by fitting a constant
multiplier αy to |F1| for each of the (φ ,β ) data sets using root
mean squared regressions, then averaged for each β value.
αy more strongly depends on β than γ and the first order
approximation of αy(β ) assumes γ to be constant. While less
accurate for certain plate element velocities and orientations,
assuming αy = αx(0,0) limits the need for additional experi-
mental data sets to characterize. We therefore test the utility
of such a simplification for oscillation and circumnutation
3D simulations despite these limitations; these curved shapes
will not be dominated by the error-prone regions in F1, and
|F1|< |F23| under a majority of conditions.

Fig. 5. Plate validation data. (A) Representation of results from plate
validation experiments for all combinations of β and φ . The mean measured
force per unit depth from experiments are represented as dots in the E3, e2
and e1 directions, and error bars indicate standard deviation. Corresponding
model-predicted values are represented as solid lines. The solid blue lines
represent model-predicted |F1| force for αy = αx(0,0), while dashed blue
lines represent the results when αy is a linear function of β . (B) Median
relative error over all values of ψ for |F1| and |F23| – total force along the
e1 axis, and force in the e2-E3 plane, respectively – is plotted over β and φ .
Force values are scaled to the total force magnitude predicted at each value
of ψ .

Fig. 6. Characterization of αy. (Left) The means and standard deviations
of fit coefficient αy over three values of φ are plotted against β . The dashed
line indicates a linear fit to the means and solid line represents αy = αx(0,0).
(Right) αy coefficients for each individual data point are plotted as a function
of γ . αy = αx(0,0) is indicated with a solid black line and dashed colored
lines indicate the values of αy predicted by the linear fit αy(β ).

C. Ellipsoid with body pitch

We simulate a behavior frequently seen in burrowing ani-
mals: oscillation in body pitch, as described in [28], [29]. We
postulate that oscillation of a body during granular intrusion
may provide some advantage during penetration applications.
Preliminary experiments, similar to the ones demonstrated in
[30], with two mole crab specimens show body pitching of
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Fig. 7. Pacific mole crab-inspired oscillations. (A) The experimental
setup consists of a motorized linkage mechanism that produces oscillation
in body pitch about the indicated center of rotation (COR) at the desired
amplitude and frequency during penetration. Tip trajectory is indicated with
a gray line. The planar trajectory of the ellipsoid tip occurs at a frequency
of 1.25 Hz and amplitude of ∼9 degrees. (B) Model-predicted vertical and
lateral forces (dashed black curves) acting on the oscillating body throughout
intrusion are compared with experimentally-obtained results for an identical
experimental burrowing trajectory. Experimental lateral force (red) and vertical
force (blue) represent means over 5 experimental trials. The shaded areas
indicate mean and +/- standard deviation of experimental results. The force
response predicted by the model of the intruding ellipsoid without oscillations
is also compared with the oscillation data.

the crabs at a frequency of 1-2 Hz and magnitudes of 2-10◦

during burrowing events. The present work is not intended to
provide biomechanical or morphological assertions about this
organism; we mimic this observed motion to constrain our
simulation to biologically-relevant motion scales and compare
our robotic experimental data with simulation results.

The shape of the mole crab is simplified to a 3D printed el-
lipsoid with an aspect ratio matching that observed in animals
(36mm height x 19mm width/depth). During insertion trials,
the ellipsoid oscillates about a horizontal axis, representing
the intersection of the animals’ transverse and frontal planes
at approximately the center of mass. A set of linkages is
utilized to create the desired oscillations and is driven from
above by a DC motor, shown in Fig. 7(A). In experiments,
the ellipsoid mechanism is fixtured to a vertically-oriented bar
with 0.4 cm2 cross-sectional area, which is not accounted for
in simulation. This discrepancy may account for some error
in model predictions. Experiments are performed at the same
frequency, amplitude, and intrusion velocity as in simulation:
frequency 1.25 Hz, amplitude 9 degrees and downward vertical
velocity 5 mm/sec.

We compare the vertical and lateral forces averaged over five
experimental trials with model-predicted values, with results
in Fig. 7(B) indicating overall agreement. The lateral force
oscillates about zero with half the frequency of vertical force
oscillations because peaks in vertical force occur when the
lateral force passes a value of 0 N. The oscillating ellipsoid
changes direction at these points, thus vertical resistive forces
dominate when there is no lateral velocity. Irregularities in
the substrate’s surface, such as small mounds or holes, alter
shallow intrusion forces and make depth measurements less
precise, thus we have aligned the peaks in measured lateral

Fig. 8. Root-inspired circumnutation. (A) A root-inspired penetrator
performs tip circumnutation while inserted vertically into soil. Directions
of penetrator rotation, intrusion velocity, and trip trajectories are indicated.
Tip angle is defined as η , and vertical distance traveled in one rotation is
defined as pitch P. The 3D circumnutation trajectory of the root tip has a
fixed period of 24 seconds and varying intrusion velocity in order to vary the
overall circumnutation rate. (B) For a single value of tip angle η and two
different rotation rates P, resistive forces are compared between simulation
and experiment. Solid lines represent experimental means over three trials
and shaded regions represents standard deviation. Dashed lines indicate model
predictions. (C) For two different values of tip angle η , energy consumption
required for a 35 mm vertical displacement is compared between simulation
and experiment. Solid lines represent results from RFT-based simulation,
while dots represent means of experimental data and error bars represent
standard deviation over three trials. The grayed region left of dashed line
indicates where substrate re-interaction is expected.

force to adjust for phase lag and depth discrepancies upon
initial intrusion.

The results of this data suggest that oscillation at this
frequency and amplitude results in transient reductions in the
vertical force component. However, the peak vertical forces
are unchanged compared with the non-oscillating case, and
there is an energetic cost to oscillate the body because of
the large lateral forces required. Independent of these specific
observations, this experiment stands as an example of how
RFT can be computed for a curved 3D object over a complex
planar trajectory using the proposed method, which can help
to motivate further study into new robot control strategies.

D. Parametric study of circumnutation

Circumnutation is a 3D intrusion strategy studied exten-
sively in the context of root penetration [2], [27] and used in
robot design and control [31]. The benefits of circumnutation
to root penetration are not yet fully understood, though ev-
idence indicates multifunctionality, including obstacle avoid-
ance and robustness to a variety of substrates [32]. Recent
empirical results by Del Dottore et al. (2017), using a robotic
testbed, indicate an energetic advantage to circumnutation
relative to straight vertical penetration.

We explore this phenomena in dry, uniform granular media
using the aforementioned UR robot and MATLAB simulation.
A root-inspired paraboloid probe holds a fixed angle η relative
to the vertical penetration direction, which the probe is also
rotated about. This results in a helical tip trajectory with a
pitch of P, as shown in Fig. 8(A). The paraboloid is first
inserted to a depth such that it is below the surface, then
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inserted with circumnutation for an additional 35 mm of depth.
In the experimental setup, the angular velocity of the robot
wrist is held constant at 15◦/sec and the pitch of the helical
path is controlled via vertical intrusion velocity. The thin
vertical rectangular body to which the root tip is fixtured is
not accounted for in simulation.

Measured and simulated forces for η=10◦ and
P=[40,167]mm are shown in Fig. 8(B). We also compare the
energy required to reach 35 mm depth across varying helical
pitch lengths for η = [10◦,20◦], shown in Fig. 8(C); results
match trends found in [27]. For P≥40 mm, there is agreement
between the model and the measured vertical insertion energy;
however, force predictions deviate for P=20 mm. The shaded
region indicates when the trajectory of the root tip intersects
its own path. Intrusion introduces both surface disturbances
and changes in grain packing, which likely increase as pitch
reduces and material re-interaction occurs.

V. DISCUSSION

Velocity decomposition provides a method for implementing
3D RFT models that utilize data collected from orthogonal
horizontal and vertical planes alone, through the characteriza-
tion of terms f1 and f23. However, this approach assumes an αy
function, which in this work is selected as αy = αx(γ = 0,β =
0). In order to reduce error further, a more complex empirical
model for this resistive coefficient can be characterized using
data outside of the two horizontal and vertical planes of
motion. Future work will investigate whether a an empirical
model for αy(γ,β ) can be scaled to different granular materials
for use in 3D, as demonstrated for 2D RFT [14]. The current
work shows that assuming a simple model for αy can be
useful, but this implementation will be more or less accurate
for different shapes and trajectories.

The geometries analyzed in this study are symmetric convex
hulls, for which the majority of discretized elements have
intermediate values of β . Because error is demonstrated to be
lower for these intermediate values, the model is expected to
perform well in these scenarios. While we expect this simula-
tion method to generalize to more irregular geometries, future
work should investigate application to asymmetric 3D shapes
and shapes with concave features, which are known to affect
2D granular RFT accuracy. Also note that the discontinuity
in the orientation of e1 as β approaches 0◦, defined in Sec.
II, has the potential to introduce simulation inconsistency for
bodies and motions which contain many elements with low β .
These effects will be explored in future work.

A. Computation time & spatial convergence

3D RFT simulation times increase approximately linearly
with the number of body plate elements, n, for a given time
step and thus are dependent on body discretization mesh den-
sity. The force on each plate element requires several algebraic
operations to compute. Fewer calculations are performed by
either decreasing the number of plate elements or increasing
the time step size, ∆t. The simulation parameters utilized to
generate Figs. 7 and 8 are reported in Fig. 9(A), along with
computation times.

Fig. 9. The effect of meshing resolution. (A) The parameters utilized to
simulate the results in Figs. 7 and 8 are reported along with computation
times for the adopted personal computer (2.6GHz 6-core Intel Core i7,
Turbo Boost up to 4.3GHz, with 9MB shared L3 cache). (B) Dimensionless
parameter (κLc)

−1 describes the characteristic length of the mesh element
size Lc relative to the curvature κ . Spherical meshes are generated using
Autodesk Meshmixer. The MATLAB Global Optimization Toolbox is used
to compute the maximum and minimum resistive force magnitudes over all
mesh orientations; the reported deviation is the percent difference.

In order to analyze the effect of element density on the
precision of 3D RFT, a spherical body is meshed into .STL
files of varying numbers of triangular elements, n. Resistive
forces are calculated as the sphere is translated in the E1-
E2 plane and its orientation is varied. For each mesh, the
difference between the maximum and minimum horizontal
force magnitude over all possible orientations is reported in
Fig. 9(B). Mesh density is characterized by the dimensionless
parameter (κLc)

−1, where curvature κ is the inverse of the
sphere radius and Lc is the characteristic length scale of the
plate elements. In other words, a sphere of any radius requires
the same number of elements to ensure convergence. At higher
spatial resolutions or with a greater number of elements,
deviation converges towards zero and the force is less sensitive
to object orientation. For instance, (κLc)

−1 = 6 requires 1000
plate elements and reduces output force variation to 2.5%,
which may be an appropriate balance between model fidelity
and computation time.

Fast simulations create new opportunities to quickly com-
pare machine control and design strategies through large pa-
rameter searches. Continued development of rapid simulation
tools, like 3D granular RFT, will further empower the devel-
opment of new robots and devices that can aptly interact with
granular media. This 3D RFT tool is not intended to provide
perfectly precise force predictions, but rather can rapidly
provide insights and guidelines for comparing different robot
control and mechanism design options. Thus, it complements
more computationally intensive, high fidelity tools such as
Discrete Element Method.

VI. CONCLUSION

This work demonstrates how a 3D granular RFT method can
be implemented in robot control applications for curved 3D
shapes and arbitrary velocity directions. We provide a method-
ological approach for achieving this by utilizing projection
of velocities. Conveniently, it is only dependent on a limited
set of scaling factor characterizations and one additional plate
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orientation parameter, yet can be used for a range of objects
and trajectories. We expect this 3D extension of RFT to
further expand the employment of granular RFT to broader
applications, such as the design of mechanisms that interact
with regolith, industrial machines that work with powders, or
food service robots that handle grains.
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