Bear Fold

ME102B - 2021| Bernardo Fichman Lacerda & Thomas Ragsac

4 Bar
Rocker-Rocker
Linkage
Mechanism

DC Brush
Motor
Transmission

; State Machine
ESP32 SN Electronic Circuit
Microcontroller

Bear Fold was a clothes folding machine created to make house chores easier and more fun. The
original goal of our device was designed to have three different buttons for distinct clothing pieces: shirts,
pants, and shorts. Each button would activate an unique sequence of rotations involving the three motors
of the system, and each sequence was going to occur according to the type of cloth being folded. To
achieve the folding motion, each motor is connected to a d-shaft to drive a double-crank four-bar linkage.
The shaft would rotate a light weight panel where the cloth is going to be strategically positioned on. The
amount of rotation done by each motor would be determined by a current sensor which commands the
panel to come back to the initial position after achieving a maximum current. As a safety feature, if the
current sensor detects excessive pressure applied to the panel, all motors would stop rotating and user
input would be blocked until the excessive pressure was removed. A potentiometer connected to the
system would modify how much torque would be applied by the motors, changing the speed of the
clothes folding process and the strength of each folding crease.

Due to time and budget constraints, the project was reduced to one panel and one DC brush
motor, to clearly demonstrate all the mechanical and electrical aspects of the project. In order to simulate
the multiple patterns of folding, the panel would perform different movements for each button press.
Since the system was reduced to one component, the outer housing was not assembled as intended. In
addition, the current would have been measured using INA219 High Side DC Current Sensors, but due to
difficulties in making the sensor interact with the ESP32, current sensing was not implemented on the
project. In addition, the state diagram was not able to be fully integrated into the machine. We touch on
this later in the document.

Function Critical Decisions

One of our concerns was having a transmission to exert a sufficient torque to lift the panels, while at the
same time rotating the panels quick enough to prevent the clothes from falling or sliding off the panel. We
decided to incorporate a linkage into the transmission. Linkages could provide mechanical advantage we
required and could be customized to achieve the motion we desired. The best feasible mechanism
achieved was a double-crank four bar linkage to achieve full rotation of a panel. It was created following
Garchoff’s rule with the smallest linkages fixed to the housing. The folding panels were laid on the 14cm
linkages, connected by tight fit dowels and a d-shaft.

The motor we were given by Tom Clark from the Hesse Machine Shop was a dfrobot Metal DC Geared
Motor w/Encoder - 12V 251RPM. The motor specifications are listed in the appendix section. Luckily, the
torque requirement we needed was less than the 18 kg*cm stall torque. The approximated torque required
to move the biggest panel was calculated as shown below:

Assumptions:
® Linkages are massless, rigid body, statics

— — 3 Moment Balance
ppanel - pbi‘rchplywood = 700 k‘g/m SM =0= —-T 4+ r* (W)
Calculating Total Weight 0 required total
=w +w o= r*w,)
total panel clothes required total
— = (0.5 * width *(w
panel - ppanel * Vpanel (paznel) (total)
— 3 = (0.5 * 26 * 10 °) * (4.3326N
panel (700 kg/m) i VPanel () ()
— i * *
Vpanel = 1/4inch * 76.43cm * 26cm T‘required — 05632N * m
mpanel= 0.4417 kg required 5.74kg * cm

w_ =0.4417kg * 9.8m/s’ = 4.3326 N

to

Deciding Transmission Parts
The motor was decided to be directly attached to the linkages via a d-shaft. The components in our

transmission can be found in the cross section view of the CAD in the bottom of the document. The shaft
coupler is used to couple the movement between the motor and the transmission system. A transmission is
used to prevent excessive loading on the motor bearings internal of the motor. Two shaft collars are used
to prevent axial movement of parts. We knew there would be no radial loading, so using friction would be
sufficient. Nylon sleeve bearings are put in one of our 3D printed brackets. The choice of a sleeve bearing

was to allow smooth movement of the d-shaft, to transmit load to the transmission instead of the motor.
More significantly, for savings since sleeve bearings do not require belleville washers or washers as they

do not have ball bearings inside like ball bearings.

Calculations can be done for how much force will be transmitted on the sleeve bearings. We can reduce it

from a 3D problem to a 2D problem.

¥/
Weight

Reaction
Forces

Assumptions:

Reaction Reaction
Forces Forces

Weight

® 2D problem, linkages are massless, rigid body, statics

SFx = 0

SFy =0 =F, +F_ —W
_ _ L *

M =0 = —5*W + L*F_

L _ g %
W2 L FA2
-

FA2_2
O=FA1+FA2—W
_ wo_
0—FA1+ > w
=
FAl_Z

Coupling Mechanical Parts

Our d-shaft had to be constrained to the laser cut linkages. We did not want to use glue, so d shaped hole
with a -0.08in from nominal dimensions was laser cut out from our linkages to create the tight,
interference fit we needed. With a loose fit, the shaft would slip.

State Transition Diagram

Circuit Diagram

State Machine

We were able to program the buttons to activate changing modes from armed to Folding Shirts, Folding
Pants, and Folding Shorts. We achieved this by creating a button isr() function that would then trigger a
___ buttonPressCheck function to be true. We were able to activate a change in a potentiometer by
implementing a checkPotentiomter() event checker and service routine.

We were not able to implement the folding of the motor. We were able to incorporate the motor
rotating once in the clothes folding modes and we implemented PI control, yet incorporating both was not
completed in time. The plan was to have the motor be position controlled using the encoder attached to
the motor. The motor has a gear ratio of 43.8:1 and a full revolution of the output shaft equates to a 700
count. We planned to have the motor move 90 degrees, or 700/4 counts with position control. First, with
the panel closed, the encoder would reset the count. Then the PI control would make the motor rotate up
to 700 counts and oscillate at the open panel/clothes folded position. This would have happened until a
timer finishes. Once the timer finishes the count would reset to 0 and then the motor would rotate to a
-700 count and oscillate at the close panel/clothes placement position until a timer finishes. This sequence
would keep happening until the number of folds per folding mode needed was complete.

We were also not able to completely incorporate current sensing to activate a warning mode. We
had trouble having the ESP32 communicate with an I12C device if the ESP32 was flashed with Arduino.
We were able to establish communication with an Arduino. After asking the GSI for a solution, we
learned the solution is configuring the pins in the setup(). Unfortunately, we ran out of time.

Reflections

During the project creation and development, a couple strategies were well implemented. Open
communication and regular weekly meetings throughout the whole semester allowed us to work at a
steady pace and prevented any group member from being overloaded or end up doing all the work by
himself. In addition, the equal say on decisions and the sense of partnership created a healthy and pleasant
working environment. Another successful strategy implemented was the constant collaboration and
communication with people who had more knowledge and design experience than us. By seeking help
from the professor, the GSIs, Tom Clark and Adam Hutz, the design specialist from the Jacobs lab, we
were able to learn a lot and find solutions to our difficulties and save time.

One of the things that we would do differently was the time management of the process; we spent
too much time trying to design a mechanism, and that delayed the rest of the project considerably. We
started the project with unrealistic ambitions, without knowing that even machines that seem simple can
be complex during the creation process. At first, we conceptualized what the mechanism would do. When
trying to make the mechanism work realistically with all necessary parts in CAD, it turned out to be very
difficult. Even with help from those with design experience, designing a mechanism delayed our ability to
order parts on time, prototype on time, and implement the state diagram with a working mechanical
system on time. In addition, when implementing our CAD design and code for other aspects, we found we
had not considered important details that we would have solved sooner if we ordered parts sooner. i.e.
having all linkages attached rigidly and not interfere with each other required a new linkage design. Or
constricting a d-shaft to the linkages required a tight tolerance interference fit, a fit found by iterative
prototyping. Finally, manufacturing our whole physical product from scratch was time consuming and
expensive. Buying elements ready or semi ready would have been a great alternative in the long run.

Images of CAD

Full Concept CAD

All Panels, Closed

All 3 Panels, Open Showing Mechanisms

Front Cross Sectional View

Side Cross Sectional View

Fabrication CAD

Isometric View, Panel, Linkages, Motor Island, Transmission, Panel Closed

>3

Isometric View, Panel, Linkages, Motor [sland, Transmission, Panel Opening

. INYN4

Side View, Linkages, Motor Island, Transmission, Panel Opening

" Shaft
_ Collar

Shaft
Collar A1

Sleeve
Bearing

Sleeve
Bearing

Shaft
Coupler

4" D-Shaft
3D Printed Housing
Brackets

M5 Screws and
Nuts

Labeled Front View of Transmission

4" D-Shaft
- ’ 3D Printed Housing
. Brackets ~
wll
M5 Screws and
Nuts

Labeled Cross-Sectional View of Transmission

Sleeve
Bearing

Binding
Barrels

Labeled Isometric View of Transmission

Shaft
Coupler £

A/ Shaft
Collar

Sleeve _
Bearing /

Labeled Cross-Sectional Isometric View of Transmission

10

Screenshot of Code

11

Initialization Code

Define Pins

#include <Arduino.h>
#include <ESP32Encoder.h>

L1117 77777777777770777777777777/77777/7/7/7777/777777777777/77
//Define constants
(1777777777777 777707777777777777/7777/77/7777/7/77777/777777/77

#define
#define
#define
#define

#define
#define

BTN_SI 27 // Shirt button pin number
BTN_P 15 // Pants button pin number
BTN_SO 14 // Shorts button pin number
POT 26 // Potentiometer

BIN_1 25 // Motor Pin
BIN_2 4 // Motor Pin

Setup Variables

v vavs
//Setup variables
iy aaiavi

//Setup varti

20 * (pow(10, -3)); // milli seconds
0;

// Potentiometer Variables

irlt urr ,:‘ C L L(eter

int

int res = 4095 / 2; //threshold value for on/off

int of is offset

int th)ld + o t; //ipper Threshold
int lower e 1 ffs //lower Threshold

// Button Variables
volatile bool sl
volatile bool
volatile bool shi

// Timer Variables

// Timer for Button Bounce

volatile bool time terr

hw_timer_t * timer = NULL;
tMUX_TYPE timerMux = portMUX

// Timers for Motor

volatile bool in = false; // check timer interrupt 1

volatile bool ¢ false; // check timer interrupt 2
// counts the number of triggering of the alarm

5
1 K t = NULL;

hw_timer_t NULL;

portMUX_TYPE timerMux0 = port

// setting PWM properties -
const int freq = 5000;
const int ledChar

const int 1

const int

int MAX

int «

int «
int L
bool
int co
int
int
int
int
int K
int Ki =
int e
int err

// State Variables ---

const int armedMod 1; //Armed State

const int f 1ing L = 2; //Folding shirts State
const int Ln 3; //Folding pants State
const int f i [4; //Folding shorts State
const int warningMo //Warning State

volatile int c : g dMode;

13

Defining Functions, isr for button press

JI11I171T7 117707770777 17777771777777/71777777717717/17/
//Function Initialization
VNI aa s aa s asinii

// State Interupt Service Routines
void isr_shirt() { // the function to be called when interrupt is triggered
= true;

isr_pants() { // the function to be called when interrupt is triggered
= true;

isr_shorts() { // the function to be called when interrupt is triggered
= true;

14

Defining Functions, isr for timers

[
// Timer Functions

//button bounce onTime()
ATTR onTime() // Code is run when timer is finished

true; // this activates only when the timer has finished
imerMux);
timerMux);
); // Stops the timer since we only want it to start when the button is pressed

//Reset Button Press

_ISR(&timerMu 3
true; // the functlon to be called when timer interrupt is triggered
S| timerMux@);

// Timers for motors
TR onTimel()

_ISR(&timerMuxl);
true // the function to be called when timer interrupt is triggered
imerMuxl);

// Timer Initialization function for Button Bounce and Motor

void TimerInterruptInit()

{ //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 80MHz,
we will have 80,000,000 Tics.

// Button Bounce Timer Initialization
e gin(@, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 =
L @@0 000 tics / sec
hInterrupt(timer, &onTime, true); // sets which function do you want to call when the
triggered
te(, 10000000, true); //5000, true); // sets how many tics will you count
to tllgger the interrupt

timer); // Enables timer

3 // Stops the timer since we only want it to start when the button is pressed
pt = true; // True means timer can restart. False means timer is still going.

// Motor Timer Initialization
n(1l, 80, true); // timer 0, MWDT clock period = 12.5 ns *
TIMGn _Tx_ WDT CLK_ PRESCALE -> 12. 5 * 80 -> 1000 ns = 1 us, countUp
0 0, true); // edge (not level) triggered
2000000, true); // 2000000 * 1 us = 2 s, autoreload true

jin(2, 80, true); // timer 1, MWDT clock period = 12.5 ns *
TIMGn Tx WDT_CLK_PRESCALE -> 12.5 ns * 8@ -> 1000 ns = 1 us, countUp
t(1, &onTimel, true); // edge (not level) triggered
1, 20@@0 true); // 20 ms

// at least enable the timer alarms
A e(timer0); // enable
rl); // enable

15

Setup()

[]
L17777777777777777777717717777771777777177177717
LITITTIETI LTI LI LTI ILETII LT AT T 1]

void setup()
{
your setup code here, to run once:
(BTN_SI, INPUT);
(BTN_P, INPUT);
(BTN_SO, INPUT);
INPUT);
in(115200);

istors = UP; // Enable the weak pull up resistors
athdlfQ,jd(32, 33); // Attache pins for use as encoder pins
unt(@); // set starting count value after attaching
Count();

// conflgure LED PWM functtonalLtLtes

attach the channel to the GPIO to be controlled
ttachPin(BIN_1, led 21_1);
achPin(BIN_2, ledChannel_2);

//Interupt Initialization

//ISR Button InltLaleatLon
= false; // starts false because button is not pressed yet
false; // starts false because button is not pressed yet
ed = false; // starts false because button is not pressed yet
. L ISING); // set the "BTN" pin as the interrupt pin; call function
isr" when the 1nterrupt is triggered; "Rising" means triggering interrupt when the pin goes from
LOW to HIGH
attachInterrupt(BTN_P, isr_pants, RISING); // set the "BTN" pin as the interrupt pin; call function
named "isr" when the interrupt is triggered; "Rising" means triggering interrupt when the pin goes from
LOW to HIGH
a chInterrupt(BTN_SO, isr s, RISING); // set the "BTN" pin as the interrupt pin; call
function named "isr" when the interrupt is triggered; "Rising" means triggering interrupt when the pin
goes from LOW to HIGH

//Timer Initialization
TimerInt uptInit(); // Initiates timer intterupt

//Potentiometer Initializati

16

//Main loop
void loop()

{

// Get Potentiomet

evi

switch (curren

{

case ar
//Reset Motor
//MotorReset();
(t sitionR t();

//Event Checker for Shirt Button Press
if (C <ForButtonPr |
{

But

}

//Event Checker for Pants Button Press
if (C ForButtonPress_Pants())

{

}

Butto Pants();

//Event Checker for Shorts Button Press
if (CheckFo ttonPr rts())
{
BL Shorts();
}

//Event Checker for Potentiometer Change

if (c
{

oten er())

//changePotentiometerService();

sn
break;

case warningMode:
break;

default:
break;

LTI LLLI LTI LLE LTI LI P e i i il]
// Event Checkers
LTI I EI L LIS LEEEL LRI LT L

// Button Check Routine -
bool CheckForButtonPress_Shirt()

// check if the button is pressed

if (shirtButtonI ed == true)

{
shirtButtonIsPr ed = 0; //reset condition
// check if the timer is finished
if (timerInterrupt == true)

rupt = false; // reset happens once button is pressed
return true;

return false;
}
}
else
{
return false;
}
}

bool CheckForButtonPress_Pants()
{

// check if the button is pressed
if (pantsButtonIsP
{
// check if the timer is finished
if (timerInterrup = true)

pt = false; // reset happens once button is pressed

return false;

}
}

bool CheckForButtonPress_Shorts()
{

// check if the button is pressed
if (short nIsPressed == true)
{

// check if the timer is finished
= true)

t = false; // reset happens once button is pressed

18

// Potentiometer Check Routine
bool checkPotentiometer()
{
// We eventually want 3 thresholds to pass.
// This will need to implement hysteresis
if] >otentiomete L revic
(pre
{
return true; // change in potentiomter
}
else
{
return false; // no change in potentiomter
}
}

// Warning Check Routine
bool warningCheckRoutine() // will return true if warning mode will continue

{

if (c I)
{
return true; // warning mode will still continue
}
else
{
return false; // currentState will become armed
}
}

19

LI TP i i 77T rrirrriirrriiirirririirsr
// Service Routine Functions
L1000 77777 i i irrrrr7777

// Button

void ButtonResponse_Shirt()

{
currentState = foldingShirtMode;
Serial.print("State: ");
Serial.println("Shirt");

//timer restarts only when the button is pressed
// & the timer has already finished
timerRestart(timer);

}

voild ButtonResponse_Pants()

{
currentState = foldingPantsMode;
Serial.print("State: ");
Serial.println("Pants");

//timer restarts only when the button is pressed
// & the timer has already finished
timerRestart(timer);

}

vold ButtonResponse_Shorts()

{
currentState = foldingShortsMode;
Serial.print("State: ");
Serial.println("Shorts");

//timer restarts only when the button is pressed
// & the timer has already finished
timerRestart(timer);

// Motor Service Routines

void shirtMotorRoutine()
{
displayCount();
controlPositionFold();

}

void pantsMotorRoutine()
{
displayCount();
MotorFold();
}

void shortsMotorRoutine()
{
displayCount();
MotorFold();
}

void changePotentiometerService()

{

//D = map(analogRead(POT), 0, 4095, -NOM_PWM_VOLTAGE, NOM_PWM_VOLTAGE);
// change the torque that will br applied to the motor

}

// Warning Service Routine
void warningServiceRoutine()
{
Serial.println("Speed,Warning: Too much current through motor");
// reset all motors to original position
// turn off all motors
// activate speaker

21

// Motor Move Service
void displayCount()

");

ds(timer));

{
countE
error t 1't; // count error

D =Kp * error + (1) * KL * errorSum; // includes P and I term
// the scaling ratio 1/100 is to make
// Ki a decimal value

// Make the motor move if there is still error
if (D >= 0)
{

Count -

1tPWM) 5

if (D <= 0)
{
//move CCW, D +, Count +
rite(nel_2, currentPWM);

//Ensure that you don't go past the maximum possible command
if (curren > MAX LTAGE)

BO

568 $ epwocou =] ozowsy [I B $| (820N008IZ 151V ojow ino 195U0D Of ;B(EN0D HOUS /1 0} WS JBIENOD HOUS IV 55[AN0D JOJOIN J5GCISS JJLIDI LILLIGE YBUST Wieg Buldnos HOUS WLLGE'S Of LS [55xN
czol $ s $ 19845 UOGUOD §1Z1 SPXO-{00g 4o4suog /| S0y
Ee) JUsWBAOW (03O JuBASId O 4OUs /1 204 SO HoUS 005 H0uys $381¢romt BUIdLOID

e B [B BUCT /1 "4545WIDI] HOUS /1 0} "5BUDL ¥OML ZE/E X OO /L
LoPegE9 wisishs N0 U LYY SS0B.08P Of sBuysna A UoAN BuuDsg 5ASSIS UOWAN BuluuMa-AK AIna 16T

B T vrol B 6UOT 2L “81BUIOIA /L 18915 UOGIOD S¥0L 'SPUA SlICid-Q

62112698 J St 01 PUD J0IOW 11O 0} SIDSULOD Z1=140450 $/1L ous Aiojox siyoid-a

UL $ i erL $ sisod Bupui r/e-e/s SSBUMOIUL [DUSION /E-,2/S 404 'STIS PO3IUL 720
1u1 51504 Buipuid 10 soLInd pUcsss 4B JBEONSN 08V 28944 *55BONUY SIGWSSSO 01 §150d BUIPUIR M35 PUD (2408 BUIPUG (3315 SSIUDIS 861

£ % pasouoind SMOp 1/¢ PUCOSS STV todaq swon 8 & § |ozzert suaBo soBoul 129UU0D O SBMOP BUid 87 X 7/E 18 X U1 §£/0 X U1 6270 ONIDV 1) # X Ul ¥/E JUOLILIOD) SPUNCY POOWDIOH
866 $ uozow |1 666 $ /N 5SP N0 O} [SPOW O SO iy pasn s PIO Of PSSN [5UDd DUSDId S{gIXSIL W 1 55UI0IO SLIYS | 2USOld 319N Ps0og BUip|od ssL101D jSPiod Lius puocs Buipios Liys pusBsipss

a5 pesodin ADUIBIO 05 T =3 g

6 § | sy uouy siow pspssu sm 1no punoy o105 BioL 06 10 5004 “BUCT WL 6 ‘POSAL WL 80
SM "SWSI08 6L 16 3504ind PUCSSS T Z0TV0T1s 06 PAPABU M 36nD53q 1UBNoR a8 S X GIN “MBI5S POSH [234008 (8313 AOI SPHO-4DI

pasouoind I3 o'l B SSBUDIUL [DUSION §/E-v/ | 1O} 'STIS POSIL FZ-01SSSWOILL

0086 § | 540 siem sisod Bupuig 825 jusisya [OUBIDI /e~ /1 L0} ‘8215 POBLLFT0
sys00 BUPLIG 10 SsOYRNd 51k TTFARRTSTT 400 JSISONON L0EV 26966 "S9B0UI SIGUSSSD o 5150 Buipuig spsod BupuIg g/~ #/1 "M3.05 PUD (51108 BUIPUIE [95}3 SIS 881

§ [¥ES H s/8und 0o Jaso| 06 40 100d “BUCT U 6 ‘POSAL WK 80
7€ $ $M295 S Jo S50y Jsild TTVRATTSTHT 0O JSHSONOW TSTYOLZLE BU) USISD] Of PESN S0 SMSI0S S smeI0s S X SN “MSI0S POSH 1534005 3515 AO|Y SPHOO0I3
y 0 58 H 001 40 PO “BUCT LW | POBAYL W EQ
co'e $ TTARRATTITT U0D JRISOWON SLIVO&ZL6 JUNOLU JOJOLU JO} SMBIOS EW SMeos BN X EW “MSIOS POBH 1834008 [884S AC|Y SPXO-20]8
N T A B 001 10 50D POSL WW &0
9oLl $ TTARRATTIT U0D JRISOWON GEOVZEG06 . “SWBIOS GUI B USISD} O 8D 858U SMBIOS G O} SINN X G '@ SSOIO “WBUSS-LUNIDSIN “INN XOH 9945
F99Z | § o 15Us Jousp aU; U400 10y PN oG (1M FBTEIONT 3 Zeel $| Joqun [ouss ON oI W {OUL JOLSE SUL 1| U0SOSY Buno 1550) 10} PO 7% 57 X w1 - PooMAld
e § b I54s Jousp sy 410G oy pasn 50 i FBTEIOR]TSTR Sjnysul sqo00r [B &l $| ssquinn jouss ON noid W oL J0USPXS UL 1| U0SDBY Buiyn 1550 10} POoMAlg (s100u0n] 52 21 X /1 -poomhid
1BIoIanS B0 wayl oy JOPUSA AHUBND (D) 85Bd NS / BAWINN [BUBS USHDOYENT BSBYBINd uoydintaq SWBN wajl

[Eezst s dpowslord ios oljoyIog 3sDY2INg 5PIo4 103G

22

Appendix

SPECIFICATION

® Gear ratio: 43.8:1

® No-load speed: 251 + 10% RPM
® No-load current: 350 mA

¢ Start Voltage: 1.0V

® Stall Torque: 18 Kg.cm

e Stall Current: 7 A

® Insulation resistance: 20 M Q

® EncoderOperating Voltage: 5V
® Encoder type: Hall

* Encoder Resolution: 16CPR(motor shaft)/700CPR(gearbox shaft)
* Weight: 205g

Al dfrobotics Metal DC Geared Motor w/Encoder - 12V 251RPM 18Kg.cm Motor
Specifications

23

