Group 15: Jesse, Miguel, Conor
I. Opportunity

Our goal for this project was to create an interactive product that would help inform and educate
younger generations about problems of wealth inequality that affect the United States specifically. In the
United States, the top 10% of households hold roughly 70% of the wealth while the bottom 50% hold
only 2%. To demonstrate the cyclical nature of poverty, we chose the form of a claw machine to attract
younger audiences and hoped to give them an enjoyable experience while leaving them with something to
ponder moving forward.

II. Strategy

We created a claw machine that extended further based on how much money was added to it.
More expensive, luxury items were placed at the bottom while basic necessities were placed at the top,
but aside from this twist the machine operated exactly like a normal claw machine. Initially we had
wanted the gantry to reach all four corners of the framed claw machine but due to limitations in the belt
we purchased and some spacing issues we could only reach about 80% of the total region we initially
desired. Additionally we had wanted to include a slanted or stair like structure to highlight the nature of
more expensive prizes at the bottom but pivoted to simply stacking prize boxes on top of each other.
III. Integrated Device

) 1
Subsysﬁr\ il
. ‘]
| .

/)X Nema 17
tepper Mator

Figure 1,2: Claw Machine, Gantry Subsystem
The gantry utilizes 2 Nema 17 Stepper motors which were each responsible for moving a belt
transmission in the X and Y direction respectively. Additionally, limit switches were in place to prevent
the gantry from running into the walls of the frame. Bearings and shafts were purchased but pulleys and
brackets were 3D printed in an effort to save cost.

i
mHolder

. v
Interlocking f
D cear

Load Cell
| |
I

Figure 3,4: Money Collection Subsystem & Claw Subsystem

The coin collection operated off of a laser cut box which accepted quarters and an HX711 Load
Cell was connected to an amplifier which dictated how many quarters were present. The Claw had a FS90
Micro Servo responsible for actuating an interlocking gear and four bar system that opened and closed the
grippers. Additionally, there was a MG996R servo responsible for dropping and lifting the claw and prize.

IV. Function Critical Decisions

Since we used 4 motors, most of our function critical calculations revolved around these and the

calculations are listed below.

|M0t0r 1 Purpose: Lift claw + payload up and down

|Payload Weight 35.7¢g weight of a printed payload box

|C1aw Weight 235¢g weight of claw with Motor 4 + screws
Total Load 300 g Suggest we Round up for Factor of Safety
|Motor Pulley Dia 2.54 cm Room allowed within Gantry

Required Torque 762 kg-cm

MG996R Servo Torque 2.5kg-cm Motor 1 able to hold its expected load

The MG996R is a high torque yet lightweight motor which allows us to easily lift and lower the
claw with no fear of an item falling or breaking. For the NEMA motors, the Y motor will be used for
critical calculations only as it must carry the same weight as the X motor plus the additional weight of the
Y belts and bearings.

Motor 2/3 Purpose: Accentuate X-Y Gantry

Weight of Belts 98 grams Upon Measurement

Weight of Pulleys 136 grams Upon Measurement

Miscellaneous Weights

(Bushings, washers etc.) 50 grams Estimation

Coefficient of friction 0.1 Found for factor between stainless steels
Total Load 1.02 kg Rounded up for Safety

Motor Pulley Dia 2.54 cm Size of Pulleys created

Required Torque 2.59 kg-cm

NEMA 17 Hold Torque 3.2kg-cm Motor 2/3 able to hold their expected weights

The final motor which would be a part of the claw itself was one which we wanted to be small
and lightweight. The motor would also have to be relatively durable as it would be potentially moving
around the most and the most likely to get damaged.

Motor 4 Purpose: Actuate Claw |
Payload Weight 35.7 grams Upon Measurement

Coefficient of Friction of Rubber on Plywood 0.95

Gripping Force Required 37.75 grams (Prize Box Weight)/Coeff Friction |
Moment arm for finger 10.14 cm

Required Torque 374 kg-cm

FS5103R Hold Torque 3.2kg-cm Motor 4 able to hold expected weight

Other critical decisions involved which belts, shafts, bearings and other gantry parts to use. Most
of these decisions came down to price and sizing. We decided that some pulleys would be too expensive
and thought that PLA would suffice and be well worth the money saved.

V. Circuitry and State Diagrams

R
v‘!tp o et
\ ,w“;M e

ocfpate
m elffed

(Y
o

Figure 6: State Diagram and Figure 7: Circuit Diagram

Our machine worked on a 3 state system. First, there was an idle state where the game collected
money and waited for a button press to enter the game state. Next, in the game state the machine accepted
joystick inputs to move the gantry left and right. During this time, it accepted a button press that would
initiate the next game state, the prize collection process. The prize collection state involved running a
series of commands to: lower the claw a set distance based on the number of quarters, close the gripper,
return the claw to its default state, navigate the gantry to the 0,0 position over the prize chute, and finally
open the gripper, releasing the prize. From here the machine’s state will reset to idle.
VI. Reflection

We think that having a stable CAD model before construction was incredibly beneficial for our
work and helped us quickly create the gantry. If we could redo the project, we think that starting before
Thanksgiving break or working over break would be beneficial due to the amount of man hours the
project took. Additionally, we would recommend spending a larger amount of money on pulleys as these
could have run slightly smoother. We also would have spent slightly more time measuring out exact
distances for belt drives or using tensioners to ensure tension was present throughout the drive. Overall,
this is a project that we hope to pursue further and ultimately perfect.

Appendix A: Bill of Materials

Item

Buttons

Rope

Bushings

Frame
Wood

Hardware

Joystick

Linear
Rails

Load Cell

Prize
Boxes

Processor

Screws

Stepper
Motor

Servo
Motor

Stepper
Motors
Timing
Belt

Purpose

Stops Claw
from moving

Lower and
Raise Claw

Idlers for
Timing Belt

Create the
Frame

Washers/Nuts

Actuate

Movement
along motor

Weight
Sensor

Hold Prizes

ESP32

Hold Acrylic
to Plywood,
Hold
Plywood
Together

Open/Close
Claw

Raise and
Lower Claw

Pulley System

For X/Y
motion

Product Details

600V 6A 38 mm 1.5" Red Sign
Momentary Mushroom Push Button
Switch

PP Rope, 1/8" diameter, 1 ft

1/4" shaft dia flanged nylon bushings

1/4" Plywood

M4 washers, M4 hex nuts

5 Pin Stick 5P Rocker 4 - 8 Ways
Joystick

2 pack linear motion rod shafts and
linear bearings

Digital Load Cell Weight Sensor 1KG
+HX711

1/8" x 24" x 48"

Microcontroller

M4 Socket Head Screws

Stepper motor - FITEC micro servo
MG996R Motor

Stepper motor - NEMA-17 size - 200

steps/rev, 12V 350mA

L Series Timing Belt, 1/2" width

Count

15

25

Price
Per

7.49

0.05

0.69

13.32

11

21.99

8.88

15.54

11.12

Total Source/L
Price ink

7.49 Amazon

McMaste

I

26.64 Jacobs

Jacobs
0 Provided

11 Amazon

21.99 Amazon

Micro
0 Kit

8.88 Jacobs

Micro
0 Kit

Jacobs
0 Provided

0 Jacobs

Owned
0 prior

31.08 Jacobs

McMaste
2224 1

https://www.amazon.com/Uxcell-a12042700ux0294-Momentary-Mushroom-Button/dp/B011XTRUMM/ref=sr_1_4?crid=14ID1OVGKT0E9&dchild=1&keywords=stop+button+arduino&qid=1635408628&sprefix=stop+button+arduino%2Caps%2C139&sr=8-4
https://www.mcmaster.com/6389K231/
https://www.mcmaster.com/6389K231/
https://store.jacobshall.org/products/plywood-1-4-x-24-x-48
https://jacobsinstitute.berkeley.edu/making-at-jacobs/
https://jacobsinstitute.berkeley.edu/making-at-jacobs/
https://www.amazon.com/EG-STARTS-Arcade-Classic-Competition/dp/B01N2G0H1T/ref=pd_bxgy_img_1/146-4519059-9947649?pd_rd_w=gyE1g&pf_rd_p=c64372fa-c41c-422e-990d-9e034f73989b&pf_rd_r=YDBRBZZSX4KCQ8FFNS87&pd_rd_r=f6499e42-6583-4355-9061-557ace3b4d60&pd_rd_wg=2kpjE&pd_rd_i=B01N2G0H1T&psc=1
https://www.amazon.com/Linear-Motion-Bearing-Aluminum-Support/dp/B08JCGXBDZ/ref=sr_1_5?crid=2BXEEGF8PQT79&dchild=1&keywords=linear%2Bbearings&qid=1635415142&qsid=136-1289064-7968553&s=industrial&sprefix=linear%2Bbearin%2Cindustrial%2C137&sr=1-5&sres=B087WPGQ8T%2CB0896XYCB9%2CB08JCR9NY1%2CB01KL7I65W%2CB08NDJ4HW4%2CB08NDPTK5R%2CB07Y2SNX4R%2CB07DCV98HL%2CB07H8VLJQB%2CB088YWJPKT%2CB08GLDTZ78%2CB07H94RXPQ%2CB00CGSMQPQ%2CB08BZ48XZN%2CB06XP7V8KY%2CB08NDDHSD8%2CB08P1BN8NG%2CB08M9J6SJ3%2CB07DCVBR1X%2CB08NYKKJBB&srpt=HARDWARE_BEARING&th=1
https://microkit.berkeley.edu/load-cell/
https://microkit.berkeley.edu/load-cell/
https://store.jacobshall.org/products/plywood-1-4-x-24-x-48
https://microkit.berkeley.edu/huzzah32-feather-microcontroller/
https://microkit.berkeley.edu/huzzah32-feather-microcontroller/
https://jacobsinstitute.berkeley.edu/making-at-jacobs/
https://jacobsinstitute.berkeley.edu/making-at-jacobs/
https://store.jacobshall.org/products/continuous-rotation-servo-feetech-fs5103r
https://store.jacobshall.org/products/stepper-motor-nema-17-size-200-steps-rev-12v-350ma
https://www.mcmaster.com/6484K144/
https://www.mcmaster.com/6484K144/

Wire Keep Cables
Housings Organized 1

TOTAL

Appendix B: Images of CAD

Figure 1: Fully Assembled Design

Figure 2: Gantry Transmission Subsystem

Jacobs

129.32

Appendix C: Code

submissionClaw §

tinclude <Servo.h>

#include <Stepper.h>

//Joystick Pinout
#define posxX 32
#define negxX 23
#define posY 22
#define negY 14

//Motor Pinout

#define YdirPin 27

#define YstepPin 33

#define XdirPin 13

#define XstepPin 12

#define microstepPin 15

#define servoPin 18 //Claw Servo

#define zservoPin 5 //Z motion servo

Serveo claw;

Servo zmot;

//8ensor Pinout
#define limPosX 19
#define limNegX 16
#define limPosY 17
#define limNeg¥ 21
#define button 4

//VARIABLES
#define stepperDelay 1000
#define stepsPerRevolution 100

#define x O //variables to contain coordinates of gantry head

#define y Q

int NumberQuarters = 5;
int pos = 0;

volatile bool stepperLock = false;

volatile bool buttonPress = false;
volatile bool timerInterrupt = false;
int gameState = 0;

int pressCount = 0;

String pressed = "PRESSED ";

String times = " TIMES";

hw_timer t * timer = NULL;
portMUX TYPE timerMux = portMUX INITIALIZER UNLOCKED;

/17—

void IRAM ATTR isr()(
Serial.println("Press Registered");
if (!timerInterrupt) {

n("Timer Started");

buttonPress = true;

-~ BUTTON FUNCTIONS

timerRestart (timer) ;

void IRAM_ATTR onTime() {
POrtENTER_CRITICAL_ISR (stimerMux) ;
timerInterrupt = true; // the function to be called when timer interrupt is triggered

POrtEXIT_CRITICAL ISR (stimerMux);

timerStop (timer);

Serial.println("Timer Stopped”);

void IRAM_ATTR TimerInterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 80MHz,

timer - timerBegin(0, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 = 1,000,000 tics / sec
timerAttachInterrupt (timer, &onTime, true);
timerAlarmWrite (timer, 150000, trus);
timerAlarmEnable (timer); // Enables timer
timersStop (timer) ;

we will have 80,000,000 Tics.

// sets which function do you want to call when the interrupt is triggered
// sets how many tics will you count to trigger the interrupt

void IRAM ATTR successfulPress () (
pressCounti+;

Serial.println(pressed + pressCount + times);
buttonPress = false;

MOTOR FUNCTIONS

void drop(){
Zmot .attach (zservoPin) ;
zmot.write (0);
for (int =o0;

180; {
zmot.write (posDegrees) ;
delay(20);
}
zmot .write (180) ;
delay (4500) ;
zmot.detach () ;

void 1ift(){
zmot.attach(zservoPin); //Attaches zmotor Pin
for (int posDegrees = end angle; posDegrees >= start_angle; posDegrees—-) {
zmot.write (posDegrees) ;
delay (20) ;
¥
zmot.write (-180) ;
delay(7500) ;
zmot.detach () ;

void grab(){

claw.attach (servoPin) ;

int start_angle = 50;

int end_angle = 0;

for (pos = start_angle; pos >= end angle; pos—-) {
claw.write (pos) ;
delay (40) ;

}

claw.write (0);

delay (1500) ;

claw.detach() ;

void releasePrize () {

claw.attach (servoPin) ;

int start_angle = 0;

int end_angle = 50;

for (pos = start_angle; pos <= end angle; pos++) {
claw.write (pos) ;
delay (40) ;

}

claw.write (50) ;

delay (1500) ;

claw.detach() ;

void rotateStepper (int stepPin){
for (int i

= 0; i < stepsPerRevolution; i++) {
// These four lines result in 1 step:
digitalWrite (stepPin, HIGH);
delayMicroseconds (stepperDelay) ;
digitalWrite (stepPin, LOW);
delayMicroseconds (stepperDelay) ;

void DriveYMotorPositive () {
digitalWrite (YdirPin, LOW);
rotateStepper (YstepPin);
}

void DriveYMotorNegatiwve () {
digitalWrite (YdirPin, HIGH) ;
rotateStepper (YstepPin) ;
}

void DriveXMotorPositive () {
digitalWrite (XdirPin, HIGH) ;
rotate3tepper (XstepPin);
}

void DriveXMotorNegatiwve () {
digitalWrite (XdirPin, LOW);
rotateStepper (XstepPin) ;
}

void setup() {
// put your setup code here, to run once:
Serial .begin(115200) ;
//Setup Motors
pinMode (YdirPin, OUTPUT) ;
pinMode (XdirPin, OUTPUT):;
pinMode (YstepPin, COUTPUT);
pinMode (XstepPin, OUTPUT);
pinMode (servoPin, OUTPUT); //clawServo
pinMode (zservoPin, OQUTPUT); //Zmotor
pinMode (microstepPin, OUTPUT) ;
digitalWrite (microstepPin, HIGH);
claw.attach (servoPin) ;
claw.write (50);
delay (1000) ;
claw.detach () ;

//Setup Joystick

pinMode (posX, OUTPUT); digitalWrite (posX,LOW) ;
pinMode (posY, OUTPUT); digitalWrite (pos¥Y,LOW):;
pinMode (neg¥, OUTPUT); digitalWrite (negX, LOW) ;
pinMode (neqg¥, OUTPUT); digitalWrite (neg¥, LOW) ;

//8etup Sensors

pinMode (limPosX, INPUT PULLUP);
pinMode (limPosY, INFUT PULLUF);
pinMode (limNegX, INPUT PULLUP);
pinMode (limNegY, INPUT PULLUP);
pinMode (button, INPUT PULLUP); //button
attachInterrupt (button, isr, RISING);

TimerInterruptInit () ;

void loop() {
switch (gamsState) |
case 0: //Inserting Money
//Check for Button Press
if (buttonPress && timerInterrupt) |
successfulPress();
POrtENTER CRITICAL (&timerMux) ;
timerInterrupt = false;
pOrtEXTT_CRITICAL{&timerMux) ;
//Check for coins inserted
readStrainGaugs () ;
}
case 1: //Playing the Game
//Check for Button Press
if (buttonPress && timerInterrupt) |
successfulPress();
POrtENTER CRITICAL (&timerMux) ;
timerInterrupt = false;
pOrtEXTT_CRITICAL{&timerMux) ;

//Check for Limit Switch
if (digitalRead(limPosX) == LoW) {
serial.println("RIGHT LIMIT");

"
2

(digitalRead(limPosY) == LOW) {
Serial.println("UPPER LIMIT");

™
2

(digitalRead(limNegX) == LOW) {
Serial.println ("LEFT LIMIT");

if (digitalRead(limNegY) == LoW) {
Serial.println("LOWER LIMIT");

//Check for Joystick Press
if (digitalRead(posY) == HIGH && digitalRead(limPos¥) == HIGH && stepperLock == false) { //and limit switch is low
Serial.println("up"); //make motor go

DriveYMotorPositive () ;

if (digitalRead(posX) == HIGH && digitalRead(limPosX) == HIGH && stepperLock == falss) |
Serial.println("Right");
DriveXMotorPositive ();
1
if (digitalRead(neg¥) == HIGE && digitalRead(limNeg¥) == HIGH && stepperLock == false) {
Serial.println("down");
Drive¥MotorNegative () ;
}
1f (digitalRead(negX) == HIGH && digitalRead(limNegX) == HIGH && stepperLock == false) {
Serial.println("Left"™);
DriveXMotorNsgative () ;
}
}
case 2: //Collecting Prize
stepperLock = trus;
drep();
grab();
1ift();
zeroClaw() ;
releassPrize();
stepperLock = false;
resetMachine () ;

gamsState = 0;

