
Assistive Cabinet
Monet Garrett, Mohamed Mohamed, Kevin Rubio

Group 17

Opportunity
When it comes to cabinets, some shelves are out of reach. Although there are stepping stools, it is an
inconvenience to take them wherever you need or find them difficult to use. We developed a device that
assists in bringing objects down from higher shelves for people who are unable to reach high shelves.
With the implementation of LEDs to maintain an aesthetically pleasing look, the cabinet uses a rack and
pinion system to reach desired shelves. There are currently no similar products available that easily lower
shelves with an aesthetic appearance.
High Level Strategy
The operation of the cabinet requires users to press one of the three buttons attached to a breadboard. As
one button is pressed, its corresponding LED light will turn on to help indicate the user of their choice.
Pressing the first button(State 0) returns a missing shelf. To return the shelf, the ultrasonic sensor checks
which shelf is missing. After the readings are processed, the elevator moves up to desired shelf height.
The elevator consists of a lead-screw linear guide powered by a stepper motor for vertical motion and a
holder for where the shelves can be safely transported. The elevator is placed slightly higher than the shelf
level initially. On the holder, there is also a linear actuator that pushes each shelf back into contact with
the rack and pinion system. Once the linear actuator is fully pushed out, the elevator lowers slightly to
align the shelf rack to the pinion. Powered by a DC motor, the rack and pinion system pushes the shelf
back into its idle position.
Pressing the second button(State 1) results in the cabinet getting the second shelf. In this case, the elevator
will move up to the first shelf height. The rack and pinion system will then activate to move the shelf onto
the holder attached to the elevator. Pressing the third button(State 2) will get the second shelf in a similar
manner as above.
All functions are controlled by the different button inputs and each state shines an LED color to help the
user understand which function the code is running.
Integrated Physical Design

Function Critical Decisions
Rack and Pinion Shelf Transfer System
For our design, we were figuring out how to transfer the shelf platform to the elevator mechanism.
Various mechanisms were considered for transferring the shelf platform, including lead screws, motorized
shelves, and linear actuators on both ends. Each had their own respective issues either with cost,
complexity, weight, or a combination of those characteristics. We decided to utilize a combination of

mechanisms. For the stationary shelves, we used a rack and pinion mechanism for shelf transfer. A rack is
attached to each shelf. Each rack is in contact with a shaft with a pinion attached, which is driven by a
motor. The pinion rotating locks with the teeth on the rack, translating the shelves forward. To reduce
friction, wheels are attached to the ends of the shelf.

● Calculations here:
● Our motor specifications are as follows:

■ 12 V input
■ No load speed of 1 revolution per second
■ Rated max torque is around 0.275 N*m

With the given pinion radius of 11.9 mm, we found the horizontal force taking the horizontal component
of the force generated from the motor, which is around . This is(0. 275/0. 0119) * 𝑐𝑜𝑠(20) = 21. 68 𝑁
the maximum force that the motor can emit to the rack. We knew that with wheels the shelves can be
assumed to be frictionless. But we had to take into account the items on the shelves as well. We treat the
items on the shelf as a single body.

● 𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑝𝑖𝑛𝑖𝑜𝑛 = 𝑚𝑎𝑠𝑠𝑒𝑠 * 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑜𝑡𝑜𝑟
● 𝑀𝑎𝑠𝑠𝑒𝑠 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑆ℎ𝑒𝑙𝑓 + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠
● We do summation of forces along the x and y directions
● Σ𝐹

𝑥
= 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 * 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑜𝑡𝑜𝑟 = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒

● ->Σ𝐹
𝑦
 = 0 = 𝑁 − 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 * 9. 18 𝑚/𝑠2 𝑁 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 * 9. 18 𝑚/𝑠2

● For maintaining static friction, the inequality
->𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 <= µ * 𝑁 = µ * 𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 * 9. 18 𝑚/𝑠2

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒/𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠 <= µ * 9. 18 𝑚/𝑠2

● We can take the acceleration and relate the pinion force with static friction as
𝑎 = 𝐹𝑜𝑟𝑐𝑒 𝑜𝑓 𝑃𝑖𝑛𝑖𝑜𝑛/𝑚𝑎𝑠𝑠𝑒𝑠 = 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒/𝑀𝑎𝑠𝑠 𝑜𝑓 𝐼𝑡𝑒𝑚𝑠

● We can set this equal to the friction force inequality as 21. 68 𝑁 <=
massesµ * 9. 18 𝑚/𝑠2 * 𝑚𝑎𝑠𝑠𝑒𝑠 = 0. 8 * 9. 18 *

● As long as the masses theoretically exceed 2.95 kg, the items will not slip.
Change from Arduino Uno to Mega
We selected to use buttons for our digital input interface to allow for selection of shelves. Although we
had buttons for two shelves, we also included another button for the shelf return feature. We had to have
at least 3 interrupt pins in a microcontroller to incorporate these buttons. We had first selected to use an
Arduino Uno, since our stepper motor driver needed 5 volt inputs to function. But the Uno only had 2
interrupt pins available. So we instead used the Arduino Mega 2560 Rev3 microcontroller. This
controller had 6 interrupt pins, which were more than enough for our desired digital interface. We also
had a variety of pins to incorporate our various mechanical subsystems, motors, and actuators.
Stepper Motor selection, position calibration, and overheating
We also used a stepper motor to drive our linear guide. The linear guide consisted of a lead screw with an
8mm lead. It is attached to a carriage with a threaded hole for the lead screw and wheels to make contact
with the c-beam rail it is housed. For our motor selection, we used a Nema 23 motor with the following
specifications: With the 1600 step selection and the time increment between each step being 100
microseconds, the estimated torque based on the 2000 step specification sheet would be around 1.3 N*m.
The weight of the elevator with a shelf added on is around 6 N. The following formulas were used to
calculate the rising and lowering torque needed to move the carriage.

● Rising Torque =
(𝐹 * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟/2). * (𝑙𝑒𝑎𝑑 + π * µ * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)/(π * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − µ * 𝑙𝑒𝑎𝑑)

● Lowering Torque =
(𝐹. * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟/2). * (π * µ * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑙𝑒𝑎𝑑)/(π * 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + µ * 𝑙𝑒𝑎𝑑)

represents the coefficient of static friction of aluminum. With both a diameter and a lead of 8mm, aµ
static coefficient of 0.3 for aluminum to aluminum contact, the rising torque is 0.0164 N*m while the
lowering torque would be 4.0113 * 10^-4 N*m. Our stepper motor is sufficient in driving the lead screw
with the suggested weight, with potential to lift heavier objects.
The lead of the lead screw shows how much it has traveled with one rotation of the motor. The
positioning of the carriage is based on the step settings of the driver (1600 steps per revolution), and to
determine the height of each shelf position it is calculated as follows:

● 𝑆𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1600
● mm𝐿𝑒𝑎𝑑 = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 8
● Relating the number of steps to the lead, we get 200 steps per mm.

To find the number of steps needed to embed into our programming, we multiply this rate by the desired
height we want from our measurements, and calibrate from there. The heights we needed were at 59.5
mm for shelf 1 and 147.5 mm for shelf 2. The steps needed to displace for these are 11900 and 29500,
respectively.
Circuit Diagram

Diagram: https://drive.google.com/file/d/1b_py12VaO3QC3ksgTHKnClD3XzoUimln/view?usp=sharing
State Diagram

https://drive.google.com/file/d/1b_py12VaO3QC3ksgTHKnClD3XzoUimln/view?usp=sharing

Diagram:https://drive.google.com/file/d/1dfpa8nPIaJiHONG0OkDBvyUDC_aAwZQS/view?usp=sharing
Reflection
We wished we had developed an easier/smoother transition between shelves and lowering mechanism
since it led to laborious calibration tests. However, we had a good division of tasks among our members,
allowing us to work faster and more efficiently.
BOM

Item # QTY Item Name Supplier
Name Cost per Unit Total

Price Comments

Reference
number - name of part

Name of
supplier
(may be
easier to
group by
supplier)

If manufactured in
house, give

estimated cost of
the maximum

material you will
need

Any comments you need to
let us know. If you are

manufacturing in house,
please give maximum
dimensions of the part

1 1 DC Motor
Linear Actuator

Jacobs
Material

Store
26.97 26.97

https://drive.google.com/file/d/1dfpa8nPIaJiHONG0OkDBvyUDC_aAwZQS/view?usp=sharing

2 3 Plywood - 1/4"
x 24" x 48"

Jacobs
Material

Store
13.32 39.96 Will be laser cut at Jacobs

3 2 Plywood - 1/4"
x 12" x 24"

Jacobs
Material

Store
1.67 3.34 Will be cut at Jacobs

4 1 Acrylic - 1/8 x
12' x 24'

Invention
Labs

Material
Store

9 9 Will be cut at Jacobs

5 1 Wires Amazon 6 6 Pack of various lengthed
wires

6 1 Arduino Mega Amazon 34.94 34.94

7 3 LEDs Microkit 0 0 Have material through club

8 3 Buttons Microkit 0 0

9 2 Ultrasonic
Sensor Microkit 0 0

10 1 PLA - 100m
Jacobs
Material

Store
0 0 3D printing at Jacobs Hall

11 1 Pack of Various
Resistors

Member
already
owned

0 0 Mainly used 10K and 220
ohm resistors

12 2 12V DC Gear
Motor Amazon 17.88 35.76

13 2
L298N DC
Motor Drive
Controller

Amazon 8.99 17.98

14 1 CNC Stepper
Motor Driver Amazon 28.99 28.99

15 1
Aluminum

Profile Z axis
Stepper Motor

Amazon 74.9 74.9

16 1 Various Nuts
and Screws Amazon 17.89 17.89 Mainly used M3, M4, and

M5 screws

17 1 12 V external
Power Supply Amazon 0 0 Came with Stepper Motor

18 1 5V power
supply Microkit 0 0

19 1 24 V Power
Supply Amazon 0 0 Came with Stepper Motor

20 1 Plastic Castor
Wheels Amazon 7.99 7.99

CAD Design Model

#include <AccelStepper.h>
const int motor1pin1 = 7;
const int motor1pin2 = 8;
const int ENA_pin = 4;
const int motor2pin1 = 9;
const int motor2pin2 = 10;
const int ENB_pin = 6;
const int actuatorpwm = 13;
const int actuatorpin1 = 22;
const int actuatorpin2 = 23;
const int BTN0 = 2;
const int BTN1 = 18;
const int BTN2 = 19;
const int LED0 = 11;
const int LED1 = 12;
const int LED2 = 51;
const int trigPin1 = 3;
const int echoPin1 = 5;
const int trigPin2 = 46;
const int echoPin2 = 47;
const int dirPin = 27;
const int stepPin = 26;
const int shelf1height1 = 12650;
const int shelf2height1 = 30250;
const int shelf1height2 = 11150;
const int shelf2height2 = 28750;
volatile int button = 3;

AccelStepper stepper(2, 26, 27);

int val = 0;
int previous = 0;
int long newval = 0;

long debouncing_time = 50; //Debouncing Time
in Milliseconds
volatile unsigned long last_millis;
long duration; // variable for the duration
of sound wave travel
int distance; // variable for the distance
measurement

void isr0() {
 if ((long)(millis() - last_millis) >=
debouncing_time) {
 button = 0;
 last_millis = millis();
 }
}

void isr1() {
 if ((long)(millis() - last_millis) >=

debouncing_time) {
 button = 1;
 last_millis = millis();
 }
}

void isr2() {
 if ((long)(millis() - last_millis) >=
debouncing_time) {
 button = 2;
 last_millis = millis();
 }
}

void setup() {
 Serial.begin(115200);
 // Motor Set Up:
 pinMode(motor1pin1, OUTPUT);
 pinMode(motor1pin2, OUTPUT);
 pinMode(ENA_pin, OUTPUT);
 pinMode(motor2pin1, OUTPUT);
 pinMode(motor2pin2, OUTPUT);
 pinMode(ENB_pin, OUTPUT);
 pinMode(actuatorpin1, OUTPUT);
 pinMode(actuatorpin2, OUTPUT);
 pinMode(actuatorpwm, OUTPUT);
 pinMode(dirPin, OUTPUT);

 digitalWrite(dirPin, LOW);
 pinMode(stepPin, OUTPUT);

 //Button Setup
 pinMode(BTN0, INPUT);

attachInterrupt(digitalPinToInterrupt(BTN0),
isr0, RISING);
 pinMode(BTN1, INPUT);

attachInterrupt(digitalPinToInterrupt(BTN1),
isr1, RISING);
 pinMode(BTN2, INPUT);

attachInterrupt(digitalPinToInterrupt(BTN2),
isr2, RISING);

 //LED Setup
 pinMode(LED0, OUTPUT);
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 digitalWrite(LED0, LOW);
 digitalWrite(LED1, LOW);
 digitalWrite(LED2, LOW);

 //Ultrasonic Sensor Setup
 pinMode(trigPin1, OUTPUT);

 pinMode(echoPin1, INPUT);
 pinMode(trigPin2, OUTPUT);
 pinMode(echoPin2, INPUT);

 //POT Control Set Up
 pinMode(A0, INPUT);
 stepper.setMaxSpeed(50000);
 stepper.setAcceleration(25000);
}

void manual() {
 val = analogRead(A0);
 if ((val > previous + 4) || (val <
previous - 4)) {
 int long newval = map(val, 0, 1024, 0,
130000);
 stepper.runToNewPosition(newval);
 previous = val;
 }
}

// Code to bring out shelf
void bringoutx(int shelf) {
 if (shelf == 1) {
 analogWrite(ENA_pin, 255);
 digitalWrite(motor1pin1, LOW);
 digitalWrite(motor1pin2, HIGH);

 Serial.println("First Motor");
 delay(2000);
 digitalWrite(motor1pin2, LOW);

 } else if (shelf == 2) {
 analogWrite(ENB_pin, 255);
 digitalWrite(motor2pin1, LOW);
 digitalWrite(motor2pin2, HIGH);
 Serial.println("Second Motor");
 delay(2000);
 digitalWrite(motor2pin2, LOW);

 }
}

//Code to put back shelf
void putbackx(int shelf) {
 analogWrite(actuatorpwm, 255);
 digitalWrite(actuatorpin1, HIGH);
 digitalWrite(actuatorpin2, LOW);
 delay(6000);
 if (shelf == 1) {
 elevatedown(1000);
 analogWrite(ENA_pin, 255);
 digitalWrite(motor1pin1, HIGH);
 digitalWrite(motor1pin2, LOW);
 Serial.println("First Motor");

 delay(900);
 digitalWrite(motor1pin1, LOW);
 } else if (shelf == 2) {
 elevatedown(1000);
 analogWrite(ENB_pin, 255);
 digitalWrite(motor2pin1, HIGH);
 digitalWrite(motor2pin2, LOW);
 Serial.println("Second Motor");
 delay(900);
 digitalWrite(motor2pin1, LOW);
 }
}

// code to lift shelf up
void elevateup(int shelf) {
 digitalWrite(dirPin, LOW); // Enables the
motor to move in a particular direction
 // Makes 200 pulses for making one full
cycle rotation
 for (int x = 0; x < shelf; x++) {
 digitalWrite(stepPin, HIGH);
 delayMicroseconds(50);
 digitalWrite(stepPin, LOW);
 delayMicroseconds(50);
 }
}
// code to lower shelf down

void elevatedown(int shelf) {
 digitalWrite(dirPin, HIGH); // Enables the
motor to move in a particular direction
 // Makes 200 pulses for making one full
cycle rotation
 for (int x = 0; x < shelf; x++) {
 digitalWrite(stepPin, HIGH);
 delayMicroseconds(50);
 digitalWrite(stepPin, LOW);
 delayMicroseconds(50);
 analogWrite(actuatorpwm, 255);
 digitalWrite(actuatorpin1, LOW);
 digitalWrite(actuatorpin2, HIGH);
 }
}
float ultrasonic(int shelf) {
 if (shelf == 1) {
 digitalWrite(trigPin1, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin1, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin1, LOW);
 duration = pulseIn(echoPin1, HIGH);
 distance = (duration * .0343) / 2;
 Serial.print("Distance: ");
 Serial.println(distance);
 delay(100);

 return distance;
 } else if (shelf == 2) {
 digitalWrite(trigPin2, LOW);
 delayMicroseconds(2);
 digitalWrite(trigPin2, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin2, LOW);
 duration = pulseIn(echoPin2, HIGH);
 distance = (duration * .0343) / 2;
 Serial.print("Distance: ");
 Serial.println(distance);
 delay(100);
 return distance;
 }
}

void loop() {
 switch (button) {
 case 0:
 digitalWrite(LED0, HIGH);
 if (ultrasonic(1) > 9 & ultrasonic(1)
< 100) {
 elevateup(shelf1height1);
 putbackx(1);
 elevatedown(shelf1height1 - 1000);

 } else if (ultrasonic(2) > 9 &

ultrasonic(2) < 100) {
 elevateup(shelf2height1);
 putbackx(2);
 elevatedown(shelf2height1 - 1000);
 }
 digitalWrite(LED0, LOW);
 button = 3;
 break;
 case 1:
 digitalWrite(LED1, HIGH);
 elevateup(shelf1height2);
 bringoutx(1);
 elevatedown(shelf1height2);
 digitalWrite(LED1, LOW);
 button = 3;
 break;
 case 2:
 digitalWrite(LED2, HIGH);
 elevateup(shelf2height2);
 bringoutx(2);
 elevatedown(shelf2height2);
 digitalWrite(LED2, LOW);
 button = 3;
 break;
 case 3:
 manual();
 }

	ME102B Report
	TheFinalCountdown

