
Roll-On-You-Bot
Mark Theis1, Elizabeth Gammariello1, Han Nguyen1

Opportunity:
Ask any tennis player, and they will likely share one of the few dislikes of the game is picking up
tennis balls during practice or a match. These 66 mm diameter bright yellow objectives roll away
easily and take time to bend down and grab. This led us to our project’s opportunity: How can we
make picking up tennis balls off of a tennis court easier for the player using mechatronics design? We
designed Roll-On-You-Bot, a wheel driven robot that can maneuver on a tennis court, scoop up tennis
balls, and store them so that they may be collected by the player.

High Level Strategy:
The Roll-On-You-Bot (or ROY-Bot) drives around tennis courts or concrete surfaces. The

ROY-Bot begins in an idle state. Once the button is pressed, the robot enters the collecting state
during which it moves forward at full speed for 1 second and then comes to a gradual stop. If the
robot scoops up a ball, it will detect the added weight in the front bucket and enter the full state. At
this point, the robot waits for the user to push a button so it can empty the ball into the chassis. If the
robot did not scoop up a ball, it will wait for the player to push the button so it can move forward
again. If, while the robot is moving, it
comes too close to an obstacle, such as a
wall, net, or player, it will stop moving
and wait for the user to physically reset
the robot and move it to a different
location.

Initially, ROY-Bot was going to
detect the position of nearby balls, drive
to them, and collect them. Our team
quickly realized, however, that this was
unreasonable to implement in our
prototype due to the cost of sensors, such
as a lidar. Moreover, the software
challenges, while an interesting feat, were
beyond the scope of the course. This is a
potent area of investigation for future
iterations of ROY-Bot. Another change
was to the ball emptying mechanism.
Originally, we planned to use a rack and
pinion to lift up the collector bucket and
dump balls into the chassis. However,
based on advice from mentors and team
discussion, we modified this to an arm
that a motor rotates to lift the bucket.

Photographs:

1 ME102B at UC Berkeley, {markt, eagammariello, hanhn} @berkeley.edu

At the front of the robot, the white 3D printed bucket scoops up a tennis ball. With the ball inside, a
force sensor under the bucket notifies the microcontroller. There is also an HC-SR04 ultrasonic
distance sensor that measures frontal clearance. The white bucket lifts up due to actuation from the
motor and arm, depositing the ball into the chassis. Sometimes, the ball goes above the top of the
robot, so a small backboard helps guide it into the storage compartment. At the rear of the robot are
three status LEDs (red, yellow and green) and a push button for control. Power cables protrude from
the rear which supply the motors and microcontroller. Inside, a breadboard routes the sensors and
motor controllers to the Arduino Uno microcontroller and the power supplies. The two drive motors
attach to 38 mm gears for the 4:1 transmission to the wheels. The corresponding 152 mm output gears
attach to the wheel shafts. The wheels themselves are secured on the exterior of the chassis. One
enhancement that we expect could improve the performance of the drivetrain would be the addition of
locating features to the motor mounts. This would align them optimally on both sides of the robot to
their respective transmissions.

Function-Critical Decisions:
When designing the drive train, we separated the motors from the wheels by means of a gear box
transmission. This provided two advantages: firstly, it increased the gear ratio by 4:1, giving us more
torque to drive our chassis, and secondly, it rested the weight of the robot on larger shaft and bearing
pairs that are rated for higher radial loads. However, there was still the force from the meshing gears
to consider. We determined the maximum radial force on the motor shaft as follows:

𝜏
𝑚𝑎𝑥

= 0. 63 𝑁 · 𝑚, 𝐹
𝑚𝑎𝑥

 =
𝜏

𝑚𝑎𝑥

𝑅 = 33. 0 𝑁, 𝐹
𝑚𝑎𝑥, 𝑟𝑎𝑑

 = 𝐹
𝑚𝑎𝑥

· 𝑠𝑖𝑛(20°) = 11. 29 𝑁
The input gear has a 38 mm diameter, and with the maximum torque available from the motors in our
configuration, the highest radial force was 11.29 N, equivalent to 1.15 kg. We contacted the
manufacturer and they specified they rate their motors for 2kg of radial load. With this advice, we
found separating the motor from the input gear by a second shaft and flexible shaft coupler was
unnecessary. Moreover, this led us to a similar approach with the front motor connected to the ball
scooper bucket, so we connected the scooper arm directly to the motor in this setup.

Circuit Diagram:

State Machine Diagram:

Routine 1 (enter collecting):
● LED: Green
● Drivetrain motor: on
● Ball emptying linkage motor: off

Routine 2 (enter error):
● LED: Red (flashing)
● Drivetrain motor: off
● Ball emptying linkage motor: off

Routine 3 (enter full):
● LED: Red
● Drivetrain motor: off
● Ball emptying linkage motor: off

Routine 4 (enter idle):
● LED: Yellow
● Drivetrain motor: off
● Ball emptying linkage motor: off

Routine 5 (enter emptying):
● LED: Yellow (flashing)
● Drivetrain motor: off
● Ball emptying linkage motor: on

The above state machine diagram represents the final version of our state machine used during the
showcase. All states have remained the same during the project. There were some changes to the
transitions. These include: removing front distance checking during the emptying state, and checking
for button presses during the drive state to change to the idle state if pressed.

Reflection:
Before manufacturing, our group made sure that we had an understandable and functionable state
machine diagram. This helped the software and electrical aspects of the project come together well.
Having a functioning and detailed CAD also made the manufacturing and ordering of components
organized and smooth. However, because our group was so focused on the theoretical aspects of the
project, we did not start manufacturing and integration until late in the semester. Our advice to future
ME102B students would be to begin manufacturing and testing subsystems as soon as possible.
Specific areas of improvement we would investigate with more time and resources would be position
control of the front motor, which would require a larger microcontroller, and an improved ball
detection mechanism for the front bucket.

Appendix

Bill of Materials

Item Notes Quantity Cost Each Total Cost

¼ Inch Plywood 24” x
48” Sheet

● Chassis
● Gears
● Wheels
● Arm
● Motor hubs

Purchased from the
Jacobs Hall Material
Store

4 $13.32 $53.28

Pololu 30:1 Metal
Gearmotor 37Dx68L
mm 12V with 64 CPR
Encoder

Borrowed from Hesse
Hall

3 $0 $0

Ultrasonic Sensor Provided by ME102B
MicroKit

1 $0 $0

Pressure Sensor Purchased from
Amazon

1 pack of 2 $11.09 $11.09

½ Inch Shaft Collars Purchased from
Amazon

3 packs of 4 $10.99 $32.97

½ Inch Shaft Shims Purchased from
McMaster-Carr

1 pack of 10 $4.75 $4.75

½ Inch Shaft Disk
Spring

Purchased from
McMaster-Carr

1 pack of 12 $8.93 $8.93

6mm Shaft Flange
Coupler

Purchased from
Amazon

1 pack of 4 $7.99 $7.99

½ Inch Metal Rod
● Transmission

shafts
● Arm motor

limiter

Machined into a
D-shaped transmission
shaft

4 ft. $1.50 $6

M3 x 10 mm Screws Provided by Jacobs
Hall hardware supply

18 $0 $0

M4 x 25mm Screws Provided by Jacobs
Hall hardware supply

6 $0 $0

M3 Nuts Provided by Jacobs
Hall hardware supply

12 $0 $0

M4 Nuts Provided by Jacobs
Hall hardware supply

6 $0 $0

M3 Washers Provided by Jacobs
Hall hardware supply

12 $0 $0

M4 Washers Provided by Jacobs
Hall hardware supply

6 $0 $0

Arduino Uno
Mictrocontroller

Purchased from
Amazon

1 $19.99 $19.99

3D Printer PLA Plastic
● Front Scooper

PLA used from Jacobs
Hall Ultimaker printers

500 g $0 $0

2” Swivel Caster
Wheels

Purchased on Amazon Pack of 4 $24.23 $24.23

Tennis Ball(s) Borrowed from group
members

2 $0 $0

Felt 10 x 10 inch piece Provided by Jacobs
Hall hardware supply

2 $0 $0

Total Cost: $169.23

CAD Images

The chassis cover and motor / transmission protector were not included in the CAD for ease of
viewing.

Shown below are the front, side, and top views of the robot.

Shown below are the isometric views of the robot.

Shown below are views of the transmission mechanisms.

Shown below are views of the arm mechanism.

Microcontroller Firmware

// import libraries

#include <Encoder.h>

#include <HCSR04.h> // https://github.com/Martinsos/arduino-lib-hc-sr04

#include "TimerInterrupt.h"

// Specify GPIO Mapping

// led

#define led_green A5

#define led_yellow A4

#define led_red A3

// hc_sr04

#define hc_echo A1

#define hc_trig A0

// button

#define button 7

// force_sensor

#define fsensor A2

// motors

#define mdriver_1_dir 13

#define mdriver_1_pwm 11

#define mdriver_1_enc1 3

#define mdriver_1_enc2 10

#define mdriver_2_dir 8

#define mdriver_2_pwm 9

#define mdriver_2_enc1 2

#define mdriver_2_enc2 6

#define mdriver_3_dir 4

#define mdriver_3_pwm 5

// constants

#define STATE_IDLE 0

#define STATE_COLLECTING 1

#define STATE_FULL 2

#define STATE_EMPTYING 3

#define STATE_ERROR 4

#define MIN_DISTANCE 45 // cm

#define FORCE_SENSOR_THRESH 570 // 2.75V / 3.3V * 1023

#define ERROR_MAX 5

#define DRIVE 1

// PWM properties

#define MAX_PWM_VOLTAGE 255

#define NOM_PWM_VOLTAGE 150

#define OMEGA_DES_DRIVE 2200

// Timers

#define USE_TIMER_1 true

#define USE_TIMER_2 true

#define TIMER1_INTERVAL_MS 50L

#define TIMER2_INTERVAL_MS 100L

#define STATE_INTERVAL_MS 20

#define LOGIC_INTERVAL_US 1000

#define LED_INTERVAL_MS 50

#define DRIVE_TIME_MS 2600

#define SLOW_DOWN_INTERVAL_MS 100

#define SLOW_DOWN_START_MS 1000

#define LINKAGE_TIME_MS 5000

#define BUTTON_DEBOUNCE_TIMER 500

#define DRIVE_FEEDBACK_TIMER 100

#define LINKAGE_PWM_0 210

#define LINKAGE_TIME_1 400

#define LINKAGE_PWM_1 125

#define LINKAGE_TIME_2 640

#define LINKAGE_PWM_2 80 // -1

#define LINKAGE_TIME_21 700

#define LINKAGE_PWM_21 110 // -1

#define LINKAGE_TIME_3 725

#define LINKAGE_PWM_3 2

#define LINKAGE_TIME_4 4000 // going back

#define LINKAGE_PWM_4 120 // -1

#define LINKAGE_TIME_5 4300

#define LINKAGE_PWM_5 70

#define LINKAGE_TIME_6 4400

#define LINKAGE_PWM_6 70

#define LINKAGE_TIME_61 4500

#define LINKAGE_PWM_61 100

#define LINKAGE_TIME_62 4850

#define LINKAGE_PWM_62 30

#define FULL_TIME_MS 5000

// encoder objects

Encoder encDriveLeft(mdriver_1_enc1, mdriver_1_enc2);

Encoder encDriveRight(mdriver_2_enc1, mdriver_2_enc2);

// HC-SR04 distance sensor object

UltraSonicDistanceSensor distanceSensor(hc_trig, hc_echo);

// global variables

int global_state;

volatile bool buttonIsPressed;

volatile float force_sensor_reading;

volatile float force_sensor_reading_acc;

volatile float hc_distance_acc; // cm

volatile float hc_distance; // cm

volatile bool drive_counter;

bool driving;

bool emptying;

volatile bool led_on;

long positionLeft;

long positionRight;

bool led_red_flashing;

bool led_yellow_flashing;

long drive_time;

long led_time;

long loop_time;

volatile long current_time_US;

volatile long current_time_MS;

bool button_timer_active;

long button_timer;

long sensor_time;

long drive_time2;

int error_sum_right;

int error_sum_left;

long full_timer;

long slow_down_time;

int omega_des_local;

// Initialization

void setup()

{

// set global variable initial value

global_state = STATE_IDLE; // default state is IDLE

buttonIsPressed = false;

force_sensor_reading = 0;

force_sensor_reading_acc = 0;

drive_counter = false;

hc_distance = 0;

hc_distance_acc = 0;

driving = false;

emptying = false;

led_on = false;

led_red_flashing = false;

led_yellow_flashing = false;

positionLeft = 0;

positionRight = 0;

drive_time = 0;

led_time = 0;

loop_time = 0;

current_time_US = 0;

current_time_MS = 0;

button_timer_active = false;

button_timer = 0;

sensor_time = 0;

drive_time2 = 0;

error_sum_right = 0;

error_sum_left = 0;

full_timer = 0;

slow_down_time = 0;

omega_des_local = OMEGA_DES_DRIVE;

// assign pins

pinMode(button, INPUT);

pinMode(led_green, OUTPUT);

pinMode(led_yellow, OUTPUT);

pinMode(led_red, OUTPUT);

pinMode(fsensor, INPUT);

pinMode(mdriver_1_dir, OUTPUT);

pinMode(mdriver_1_pwm, OUTPUT);

pinMode(mdriver_2_dir, OUTPUT);

pinMode(mdriver_2_pwm, OUTPUT);

pinMode(mdriver_3_dir, OUTPUT);

pinMode(mdriver_3_pwm, OUTPUT);

pinMode(mdriver_1_enc1, INPUT);

pinMode(mdriver_1_enc2, INPUT);

pinMode(mdriver_2_enc1, INPUT);

pinMode(mdriver_2_enc2, INPUT);

pinMode(button, INPUT);

// set the status LED to yellow

setYellowLED();

// Zero encoder counters

encDriveLeft.write(0);

encDriveRight.write(0);

// start the serial connection

Serial.begin(115200);

}

void loop()

{

current_time_US = micros();

current_time_MS = millis();

if (current_time_US - loop_time >= LOGIC_INTERVAL_US)

{ // only run every LOGIC_INTERVAL_US (us)

// control flashing LEDs

if (current_time_MS - led_time >= LED_INTERVAL_MS)

{ // turn on and off every LED_INTERVAL_MS

if (led_yellow_flashing)

{

if (led_on)

{

digitalWrite(led_yellow, LOW);

led_on = false;

}

else

{

digitalWrite(led_yellow, HIGH);

led_on = true;

}

}

else if (led_red_flashing)

{

if (led_on)

{

digitalWrite(led_red, LOW);

led_on = false;

}

else

{

digitalWrite(led_red, HIGH);

led_on = true;

}

}

led_time = current_time_MS;

}

// control state machine

if (current_time_MS - sensor_time >= STATE_INTERVAL_MS)

{ // every STATE_INTERVAL_MS

refresh_sensors(); // get latest sensor data

switch (global_state)

{

case STATE_IDLE:

// LED should be yellow, all motors are turned off

if (check_weight())

{ // if there is a ball, go to state full

global_state = STATE_FULL;

routine3();

}

if (DRIVE && buttonPressEvent())

{ // if the button has been pressed, start driving

global_state = STATE_COLLECTING;

routine1();

}

break;

case STATE_COLLECTING:

// LED should be green, linkage motor is off, drive motors on

if (check_distance())

{ // if there is an object in front of the robot, go to error

global_state = STATE_ERROR;

routine2();

}

if (buttonPressEvent())

{ // if the button is pressed, go to idle

global_state = STATE_IDLE;

routine4();

}

drive_routine(); // driving

break;

case STATE_FULL:

// LED should be red, all motors are turned off

if (buttonPressEvent())

{ // if the buttin is pressed, start emptying the front scooper

global_state = STATE_EMPTYING;

routine5();

}

break;

case STATE_EMPTYING:

// LED should be blinking yellow, linkage motor on, drive off

empty_routine(); // emptying

break;

case STATE_ERROR:

// LED should be blinking red, all motors off

// only can leave this state with a system reboot

break;

default:

//Serial.println("SM_ERROR");

global_state = STATE_ERROR;

routine2();

break;

}

sensor_time = current_time_MS;

}

loop_time = current_time_US;

}

}

// Event Checkers

// check if the button has been pressed and debounce the signal

bool buttonPressEvent()

{

if (button_timer_active)

{

if (current_time_MS - button_timer >= BUTTON_DEBOUNCE_TIMER)

{

buttonIsPressed = false;

button_timer_active = false;

}

return false;

}

if (buttonIsPressed)

{

button_timer = current_time_MS;

button_timer_active = true;

return true;

}

return false;

}

// update distance, force, and button sensor values

void refresh_sensors()

{

hc_distance = distanceSensor.measureDistanceCm();

force_sensor_reading = analogRead(fsensor);

int buttonState = digitalRead(button);

if (buttonState == HIGH)

{

buttonIsPressed = true;

}

}

// check if there is a ball in the front load bucket

bool check_weight()

{

if (current_time_MS - full_timer >= FULL_TIME_MS)

{

if (force_sensor_reading < FORCE_SENSOR_THRESH)

{

return true;

}

}

return false;

}

// check if front distance is too short

bool check_distance()

{

if (hc_distance < MIN_DISTANCE && hc_distance >= 0)

{

return true;

}

else

{

return false;

}

}

// Event Service Response

// Routines

void routine1() // start collecting state

{

Serial.println("Running routine 1");

setGreenLED();

stopLinkageMotor();

startDriveMotors();

}

void routine2() // enter error state

{

Serial.println("Running routine 2");

setRedLEDflashing();

stopDriveMotors();

stopLinkageMotor();

}

void routine3() // enter full state

{

Serial.println("Running routine 3");

setRedLED();

stopDriveMotors();

stopLinkageMotor();

}

void routine4() // enter idle state

{

Serial.println("Running routine 4");

setYellowLED();

stopDriveMotors();

stopLinkageMotor();

}

void routine5() // enter emptying state

{

Serial.println("Running routine 5");

setYellowLEDflashing();

stopDriveMotors();

startLinkageMotor();

}

// Subroutines

// control driving

void drive_routine()

{

if (driving)

{

if (current_time_MS - drive_time >= DRIVE_TIME_MS)

{ // after DRIVE_TIME_MS, stop driving and go to idle

global_state = STATE_IDLE;

routine4();

}

else

{

if (current_time_MS - drive_time >= SLOW_DOWN_START_MS &&

current_time_MS - slow_down_time >= SLOW_DOWN_INTERVAL_MS &&

omega_des_local > 0)

{ // after SLOW_DOWN_START_MS milliseconds, start slowing down

Serial.println("slowing down slowing down slowing down");

Serial.println("omega_des: " + String(omega_des_local));

omega_des_local -= 100;

slow_down_time = current_time_MS;

}

if (current_time_MS - drive_time2 >= DRIVE_FEEDBACK_TIMER)

{ // every DRIVE_FEEDBACK_TIMER (100 ms), perform PI control on

drive motors

int real_count_right = -encDriveRight.read();

int real_count_left = -encDriveLeft.read();

float Kp = 0.5;

float Ki = 0.6;

int error_right = omega_des_local - real_count_right;

int error_left = omega_des_local - real_count_left;

int Dr = Kp * error_right + Ki * error_sum_right;

Serial.println("Dr: " + String(Dr));

int Dl = Kp * error_left + Ki * error_sum_left;

Serial.println("Dl: " + String(Dl));

Serial.println("omega: " + String(real_count_right));

error_sum_right += error_right;

error_sum_left += error_left;

//Ensure that the error doesn't get too high

if (error_sum_right > ERROR_MAX)

{

error_sum_right = ERROR_MAX;

}

else if (error_sum_right < -ERROR_MAX)

{

error_sum_right = -ERROR_MAX;

}

if (error_sum_left > ERROR_MAX)

{

error_sum_left = ERROR_MAX;

}

else if (error_sum_left < -ERROR_MAX)

{

error_sum_left = -ERROR_MAX;

}

//Ensure that you don't go past the maximum possible command

if (Dr > MAX_PWM_VOLTAGE)

{

Dr = MAX_PWM_VOLTAGE;

}

else if (Dr < -MAX_PWM_VOLTAGE)

{

Dr = -MAX_PWM_VOLTAGE;

}

if (Dl > MAX_PWM_VOLTAGE)

{

Dl = MAX_PWM_VOLTAGE;

}

else if (Dl < -MAX_PWM_VOLTAGE)

{

Dl = -MAX_PWM_VOLTAGE;

}

analogWrite(mdriver_1_pwm, Dr);

analogWrite(mdriver_2_pwm, Dl);

drive_time2 = current_time_MS;

encDriveLeft.write(0);

encDriveRight.write(0);

}

}

}

else

{

analogWrite(mdriver_1_pwm, 0);

analogWrite(mdriver_2_pwm, 0);

}

}

void empty_routine()

{

if (emptying)

{

if (current_time_MS - drive_time >= LINKAGE_TIME_MS)

{ // after LINKAGE_TIME_MS, turn off the linkage motor, go to idle

global_state = STATE_IDLE;

routine4();

full_timer = current_time_MS;

}

else

{ // raise and then lower front scooper bucket

if (current_time_MS - drive_time2 >= LINKAGE_TIME_1)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_1);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_2)

{ // down

digitalWrite(mdriver_3_dir, LOW);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_2);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_21)

{ // down

digitalWrite(mdriver_3_dir, LOW);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_21);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_3)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_3);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_4)

{ // down

digitalWrite(mdriver_3_dir, LOW);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_4);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_5)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_5);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_6)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_6);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_61)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_61);

}

if (current_time_MS - drive_time2 >= LINKAGE_TIME_62)

{ // up

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_62);

}

}

}

else

{ // make sure linkage motor is off after timer

analogWrite(mdriver_3_pwm, 0);

}

}

// turn on the green LED

void setGreenLED()

{

digitalWrite(led_green, HIGH);

digitalWrite(led_yellow, LOW);

digitalWrite(led_red, LOW);

led_yellow_flashing = false;

led_red_flashing = false;

}

// turn on the yellow LED

void setYellowLED()

{

digitalWrite(led_green, LOW);

digitalWrite(led_yellow, HIGH);

digitalWrite(led_red, LOW);

led_yellow_flashing = false;

led_red_flashing = false;

}

// turn on the red LED

void setRedLED()

{

digitalWrite(led_green, LOW);

digitalWrite(led_yellow, LOW);

digitalWrite(led_red, HIGH);

led_yellow_flashing = false;

led_red_flashing = false;

}

// turn on the yellow LED, flashing

void setYellowLEDflashing()

{

digitalWrite(led_green, LOW);

digitalWrite(led_yellow, HIGH);

digitalWrite(led_red, LOW);

led_yellow_flashing = true;

led_red_flashing = false;

led_on = true;

led_time = current_time_MS;

}

// turn on the red LED, flashing

void setRedLEDflashing()

{

digitalWrite(led_green, LOW);

digitalWrite(led_yellow, LOW);

digitalWrite(led_red, HIGH);

led_yellow_flashing = false;

led_red_flashing = true;

led_on = true;

led_time = current_time_MS;

}

// start driving

void startDriveMotors()

{

// left motor

digitalWrite(mdriver_1_dir, LOW);

analogWrite(mdriver_1_pwm, 0);

// right motor

digitalWrite(mdriver_2_dir, HIGH);

analogWrite(mdriver_2_pwm, 0);

driving = true;

drive_time = current_time_MS;

drive_time2 = current_time_MS;

encDriveLeft.write(0);

encDriveRight.write(0);

error_sum_right = 0;

error_sum_left = 0;

omega_des_local = OMEGA_DES_DRIVE;

slow_down_time = current_time_MS;

}

// stop driving

void stopDriveMotors()

{

// left motor

digitalWrite(mdriver_1_dir, LOW);

analogWrite(mdriver_1_pwm, 0);

// right motor

digitalWrite(mdriver_2_dir, LOW);

analogWrite(mdriver_2_pwm, 0);

driving = false;

}

// start raising front scooper bucket

void startLinkageMotor()

{

digitalWrite(mdriver_3_dir, HIGH);

analogWrite(mdriver_3_pwm, LINKAGE_PWM_0);

emptying = true;

drive_time = current_time_MS;

drive_time2 = current_time_MS;

}

// turn off the front scooper bucket

void stopLinkageMotor()

{

digitalWrite(mdriver_3_dir, LOW);

analogWrite(mdriver_3_pwm, 0);

emptying = false;

}

