
ME 102B: Final (Prototype) Manual
Uriel Barragan, Anjana Saravanan, Rohan Castelino

12 December 2021
Opportunity

The goal for this project was to create an electromechanical art piece which is both visually
engaging and capable of producing interesting music.

Initial Strategy
To meet the outlined opportunity, we first decided that we wanted to create a stringed instrument

(specifically a violin-like instrument) as there were few existing similar robots.
From there, we opted to create a relatively simple mechanical system in favor of adding

complexity through software-synchronized replicas. This goal had the added benefit of ensuring that our
project was more affordable and more likely to be completed within the limited time frame for the project.

Finally, we opted to use a crank-rocker and rack-pinion for the bowing and fretting mechanisms
respectively with the actual violin being 3d printed from an open sourced design. Also, we planned to use
a RaspberryPi 3 rather than an Arduino as it not only supports Python which aids in rapid
coding/debugging but also had WiFi (e.g. wireless) capabilities

Key Considerations:
The reaction forces () of the pinion gears were calculated for each Pololu motor using the𝐹

𝑟

equations below. The max torque () is taken from the spec sheet of each motor. The radius () of the𝜏
𝑚𝑎𝑥

𝑟

pinion gear is 3.175 mm and both systems use the same rack and pinion. The results of the fretting and
bowing systems are included in equations 3 - 6, respectively.

 Σ𝜏
𝑎
 = 𝐼 · ⍶

𝑎
= 0

− 𝜏
𝑚𝑎𝑥

+ 𝐹
𝑥
 · 𝑟 = 0

 𝐹
𝑥
 · 𝑟 =

𝜏
𝑚𝑎𝑥

𝑟 = 0. 072 𝑘𝑔 & 0. 26 𝑘𝑔

𝐹
𝑦

= 𝐹
𝑥
 · 𝑡𝑎𝑛(20°) = 0. 025 𝑘𝑔 & 0. 096 𝑘𝑔

𝐹
𝑟

= 𝐹
𝑥

2 + 𝐹
𝑦

2 = 0. 077 𝑘𝑔 & 0. 28 𝑘𝑔
𝜏

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
= 𝑟 · 𝐹

𝑟
 · 𝑠𝑖𝑛(20°) = 0. 084 𝑘𝑔·𝑐𝑚 & 0. 31 𝑘𝑔·𝑐𝑚

(1)

(2)

(3)

(4)

(5)

(6)

The Pololu motor from our lab kit was used to control the rack and pinion in the fretting
mechanism. The motor has a 75.81:1 metal gearbox which allows for a stall torque of 1.3 kg·cm and an
output torque of 0.23 kg·cm at 40% efficiency. Per the calculations above, the torque produced (0.084
kg·cm) is less than the stall torque (0.23 kg·cm), implying that the motor is powerful enough for the
fretting mechanism. This motor also makes use of the encoders to allow for feedback control and
ultimately allow the user to choose which note to produce.

A Pololu motor similar to the one in our lab kit was used for the bowing mechanism. The bowing
mechanism consists of multiple components which results in a higher mass than our fretting mechanism.
Thus, more torque is required which is why we chose to increase the gearbox ratio for the bowing motor.
This motor has a 379.17:1 metal gearbox which allows for a higher stall torque of 5.5 kg·cm and an

https://openfabpdx.com/modular-fiddle/

output torque of 0.84 kg·cm at 36% efficiency. The torque produced (0.31 kg·cm) is less than the stall
torque (5.5 kg·cm) so the motor will work.

One of our main goals was to keep the design as cost efficient as possible so that it can be easily
produced. Although bearings could have improved the mechanical performance of the systems, they are
expensive and would make our cost efficient goal unattainable. Ideally, we would be able to produce four
of these violin setups and have them play synchronously.

Results:
Mechanical Design:

As discussed earlier, we originally wanted to use a crank-slider for the bowing as it was
aesthetically engaging. However, during testing, it was found that at key points, the vertical force on the
slider led the mechanism to jam. Due to time constraints, we decided to implement a rack and pinion for
the bowing mechanism, while also adding a second mount to increase the stability of the bow rail. The
bowing motor was also repositioned in order to control the bow rack.

(a) (b)
Figures 1a-b. The initial slider-crank and the final rack-pinion assemblies

Circuit Design:

(a) (b)
Figure 2a-b. Circuit diagram and final circuit with fretting motor, analog/digital inputs, and Raspberry Pi/Arduino

Software Design:

Figure 3. Implemented state machine

Discussion:
After wrapping up the prototype, there is a long list of changes that could be made to improve its

performance. In looking at this list, there are three key lessons to be learned to avoid similar problems in
future projects.

1. Mechanical prototyping is going to be a bottleneck for the project and should be first prioritised
over software/electrical work. Creating a clean CAD model and manufacturing parts will not only
take longer than expected but also has more unavoidable hurdles (e.g. limited machine shop hours
and lead times on ordered parts). Finally, the control scheme can’t be tuned easily until the
mechanical system is done.

2. Additionally, the mechanical design should be adjustable to allow for manufacturing tolerances
and unexpected design flaws. We ran into issues with getting the right spacing between

rack/pinion gears as well as the right angle between the fretting finger and violin neck which
would have required remanufacturing to fix/maintain due to the rigid design.

3. Finally, while starting earlier and allowing for adjustments can help a lot, sometimes core
components (e.g. the crank-slider) will just not work and those central flaws need to be
discovered early on rather than only when the full product is assembled. Instead, the design
should be broken into simplified, subcomponents which can be separately tested easily. For
instance, this philosophy was taken into approach with the code which had a modular design and
where non-critical features/minor bugs were pushed off to be implemented down the line.

Appendix A: Bill of Materials

Figure 4. Screenshot of final bill of materials

Appendix B: CAD

(a) Full assembly (b) Base for attaching mechanisms

(c) Bowing mechanism (d) Fretting mechanism
Figure 5. CAD of full assembly and subcomponents

import signal
import socket
import argparse
import tty
import sys
import termios
import pdb

from gpiozero import Button, RotaryEncoder, Motor
import time, threading

Custom argparse class so can catch errors cleanly
class ArgumentParserError(Exception): pass
class HelpRequestedError(Exception): pass
class ThrowingArgumentParser(argparse.ArgumentParser):

 def error(self, message):
 raise ArgumentParserError(message)

 def print_help(self):
 raise HelpRequestedError(self.format_help() + "\n **Replace bootstrap.py with

/lockbranch**")

class InputReceiver():
 def __init__(self) -> None:

 # State machine setup
 self.state_toggle = False

 self.state = "sensor_control" # Initial case for when script first starts
 self.power_on = True # Keep main loop running by default

 # UDP setup
 self.server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 self.server_socket.bind(('', 6667))
 self.server_socket.setblocking(0)

 self.error_Integral = 0;

 # CLI setup
 self.sentence = ""
 self.params = {"bow":"False","note":"0"}

 self.param_recast_dict = {"a":"0", "b":"1", "c":"2", "k":"5","on":True,
"off":False, }

 self.argparser = self.build_argparser()
 self.sentence = "" # Initializing sentence for CLI control
 # Interrupt handler for CLI
 def state_interrupt_handler(signum, frame):

 self.state_toggle = True
 signal.signal(signal.SIGINT, state_interrupt_handler)

 # Sensor setup
 self.GPIO_setup()

 self.frettingMotor = Motor("BOARD24", "BOARD26")
 self.bowingMotor = Motor("BOARD29", "BOARD31")
 self.frettingEncoder = RotaryEncoder("BOARD38", "BOARD40", wrap=False,

max_steps=10000)
 self.frettingEncoder.steps = 0

Appendix C: Code
Note that code can also be found on GitHub here.

 self.desiredNote = 0
 self.currentNote = 0

 self.bowing = False
 self.bowingDirection = 1
 self.strokeTime = 0
 self.strokeStartTime = 0
 self.strokeTotalTime = 5 # 5 seconds per stroke?

 self.toggleNote = False # for testing

 def build_argparser(self):
 argparser =
ThrowingArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 argparser.add_argument("--bow", help="On or off?", choices=['on', 'off'])
 argparser.add_argument("--note", help="Select note to play", choices=
['a','b','c','k'])
 return argparser

 def process_sentence(self, sentence):
 new_params, unknowns = self.argparser.parse_known_args(sentence.split(' '))
 new_params = vars(new_params)

 for key in new_params:
 if new_params[key] == None:
 new_params[key] = self.params[key]
 else:
 new_params[key] = self.param_recast_dict[new_params[key]]
 self.params = new_params
 return new_params

 def stream_commands(self, params):
 print(f"Received {params}. Streaming now.")
 self.control_system(str(params))

 def GPIO_setup(self):
 def state_button_callback(channel):
 self.state_toggle = True

 def a_button_callback(channel):
 self.params['note'] = '0'
 self.stream_commands(self.params)

 def b_button_callback(channel):
 self.params['note'] = '1'
 self.stream_commands(self.params)

 def c_button_callback(channel):
 self.params['note'] = '2'
 self.stream_commands(self.params)

 def bow_input_callback_pressed(channel):
 self.params['bow'] = 'True'
 self.stream_commands(self.params)

 def bow_input_callback_released(channel):
 self.params['bow'] = 'False'
 self.stream_commands(self.params)

 # State toggle button
 self.state_button = Button("BOARD10", pull_up=False) # pulled low by default
 self.state_button.when_pressed = state_button_callback

 # Note A
 self.A_Button = Button("BOARD11", pull_up=False) # pulled low by default
 self.A_Button.when_pressed = a_button_callback

 # Note B
 self.B_Button = Button("BOARD13", pull_up=False) # pulled low by default
 self.B_Button.when_pressed = b_button_callback

 # Note C
 self.C_Button = Button("BOARD15", pull_up=False) # pulled low by default
 self.C_Button.when_pressed = c_button_callback

 # Bow toggle
 self.bow_input = Button("BOARD16", pull_up=False)
 self.bow_input.when_pressed = bow_input_callback_pressed
 self.bow_input.when_released = bow_input_callback_released

 def switch_state(self):
 self.state_toggle = False
 if self.state == "cli_control":
 # Reset CLI
 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.orig_settings)
 # Set up GPIO
 self.GPIO_setup()
 # Switch state
 self.state = 'sensor_control'
 elif self.state == "sensor_control":
 # Reset GPIO pins
 self.state_button.close()
 self.A_Button.close()
 self.B_Button.close()
 self.C_Button.close()
 self.bow_input.close()
 # Save orig CLI and then set up custom CLI
 self.orig_settings = termios.tcgetattr(sys.stdin)
 tty.setcbreak(sys.stdin)
 # Switch state
 self.state = "udp_control"
 elif self.state == "udp_control":
 # Switch state
 self.state = "cli_control"
 print(f"--Switching state to {self.state}--")

 def delete_detected(self):
 x=sys.stdin.read(2)
 if x == "[3":
 x=sys.stdin.read(1)
 if x == "~":
 self.stream_commands(self.process_sentence("--note a"))
 self.power_on = False
 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.orig_settings)
 else:
 print('ignoring special char')
 else:
 pass

 def get_text(self):
 char=sys.stdin.read(1)
 if char == chr(27):
 self.delete_detected()
 elif char == chr(10):
 print("")
 self.stream_commands(self.process_sentence(self.sentence))
 self.sentence = ""
 else:

 print(char,end="",flush=True)
 self.sentence+= char

 def main(self):
 print('--------State machine launched--------')
 print(f'--Switching state to {self.state}--')
 while self.power_on:
 # Match case to switch between states
 match self.state:
 case 'cli_control':
 try:
 self.get_text()
 # Check for state switch
 if self.state_toggle:
 self.switch_state()
 except ArgumentParserError as e:
 self.sentence = ""
 print(str(e))
 #except:
 #termios.tcsetattr(sys.stdin, termios.TCSADRAIN,
self.orig_settings)
 #print('error')

 case 'sensor_control':
 if self.state_toggle:
 self.switch_state()

 case 'udp_control':
 try:
 dataFromClient, address = self.server_socket.recvfrom(256)
 print(dataFromClient.decode())

self.stream_commands(self.process_sentence(dataFromClient.decode()))
 except:
 pass

 if self.state_toggle:
 self.switch_state()
 else:
 print('Powering off')
 self.server_socket.close()

 def bow_stroke(self):
 self.bowingDirection = not self.bowingDirection
 #print('thread started')
 t = threading.Timer(5, self.bow_stroke)

 if self.bowing:
 t.start()
 if self.bowingDirection == 1:
 print("bowing forwards")
 self.bowingMotor.forward(speed=0.25)
 else:
 print("bowing backwards")
 self.bowingMotor.backward(speed=0.25)
 else:
 self.bowingMotor.stop()
 t.cancel()

 def control_system(self, command):
 command = eval(command)

 # ----------- bow stuff -----------
 if isInstance(command['bow'],str):
 new_bow_command = eval(command['bow'])

 else:
 new_bow_command = command['bow']

 #print(new_bow_command)
 #pdb.set_trace()
 if (new_bow_command != self.bowing) & (new_bow_command == True):
 #print('if worked')
 self.bowing = True
 self.bow_stroke()

 elif new_bow_command == False:
 #print('stopping')
 self.bowing = False

 # ----------- note stuff-----------
 self.desiredNote = eval(command['note'])
 if self.desiredNote & self.desiredNote!= self.currentNote:

 note_increment = 220/4*2
 desiredNoteCount = self.desiredNote * note_increment

 currentNoteCount = self.frettingEncoder.steps

 error = desiredNoteCount - currentNoteCount
 while abs(error) != 0:
 if error > 0:
 self.frettingMotor.forward(speed=0.4)
 else:
 self.frettingMotor.backward(speed=0.2)
 currentNoteCount = self.frettingEncoder.steps
 error = desiredNoteCount - currentNoteCount
 print("Error: ", error) # debugging
 print("currentNoteCount: ", self.frettingEncoder.steps) # debugging

 self.frettingMotor.stop()
 self.currentNote = self.desiredNote
 print(self.frettingEncoder.steps)

if __name__ == "__main__":
 primaryInputReceiver = InputReceiver()
 primaryInputReceiver.main()

