ME 102B: Final (Prototype) Manual

Uriel Barragan, Anjana Saravanan, Rohan Castelino
12 December 2021

Opportunity
The goal for this project was to create an electromechanical art piece which is both visually
engaging and capable of producing interesting music.

Initial Strategy

To meet the outlined opportunity, we first decided that we wanted to create a stringed instrument
(specifically a violin-like instrument) as there were few existing similar robots.

From there, we opted to create a relatively simple mechanical system in favor of adding
complexity through software-synchronized replicas. This goal had the added benefit of ensuring that our
project was more affordable and more likely to be completed within the limited time frame for the project.

Finally, we opted to use a crank-rocker and rack-pinion for the bowing and fretting mechanisms
respectively with the actual violin being 3d printed from an open sourced design. Also, we planned to use
a RaspberryPi 3 rather than an Arduino as it not only supports Python which aids in rapid
coding/debugging but also had WiFi (e.g. wireless) capabilities

Key Considerations:
The reaction forces (F r) of the pinion gears were calculated for each Pololu motor using the

equations below. The max torque (Tmax) is taken from the spec sheet of each motor. The radius (r) of the

pinion gear is 3.175 mm and both systems use the same rack and pinion. The results of the fretting and
bowing systems are included in equations 3 - 6, respectively.

It =1-a =0)
a a (2)
-7 + F .r =0
max x (3)
F v =-25= 0.072kg &0.26 kg @
(5)
F =F_-tan(20°) = 0.025 kg & 0.096 kg o

y
F =+[F "+ Fy2 = 0.077 kg &0.28 kg

= r-Fr-sin(20°) = 0.084kg-cm&0.31kg-cm

produced

The Pololu motor from our lab kit was used to control the rack and pinion in the fretting
mechanism. The motor has a 75.81:1 metal gearbox which allows for a stall torque of 1.3 kg-cm and an
output torque of 0.23 kg-cm at 40% efficiency. Per the calculations above, the torque produced (0.084
kg-cm) is less than the stall torque (0.23 kg-cm), implying that the motor is powerful enough for the
fretting mechanism. This motor also makes use of the encoders to allow for feedback control and
ultimately allow the user to choose which note to produce.

A Pololu motor similar to the one in our lab kit was used for the bowing mechanism. The bowing
mechanism consists of multiple components which results in a higher mass than our fretting mechanism.
Thus, more torque is required which is why we chose to increase the gearbox ratio for the bowing motor.
This motor has a 379.17:1 metal gearbox which allows for a higher stall torque of 5.5 kg-cm and an

https://openfabpdx.com/modular-fiddle/

output torque of 0.84 kg-cm at 36% efficiency. The torque produced (0.31 kg-cm) is less than the stall
torque (5.5 kg-cm) so the motor will work.

One of our main goals was to keep the design as cost efficient as possible so that it can be easily
produced. Although bearings could have improved the mechanical performance of the systems, they are
expensive and would make our cost efficient goal unattainable. Ideally, we would be able to produce four
of these violin setups and have them play synchronously.

Results:
Mechanical Design:

As discussed earlier, we originally wanted to use a crank-slider for the bowing as it was
aesthetically engaging. However, during testing, it was found that at key points, the vertical force on the
slider led the mechanism to jam. Due to time constraints, we decided to implement a rack and pinion for
the bowing mechanism, while also adding a second mount to increase the stability of the bow rail. The
bowing motor was also repositioned in order to control the bow rack.

(a) (b)

Figures la-b. The initial slider-crank and the final rack-pinion assemblies

Circuit Design:

e D TAN

Note 1
Rl s
Note2 T

Notes L

10k resistors,

Pushbutton Switches /\

Potentiometer
ADC (Bowing Inpu)
(Uno) PDB181-E420K-1028
state Toggle \V4

Raspberry Pi

1516 DRV8833 e
1718 ower
1920 Q—GND Motor GND Supply
2122 Driver VINT

2324 BINt [~ BOUTI
2526 BOUT2 N
2728 R AINT AOUT1 + Bowing
08— —TAN2 AOUT2 1 - Motor
3132+
Febod Pololu #4795
3536
3738
3940
Pololu #4761
v e Ewoder ol ous 0|
Fretting
Motor
Pololu #2361

Figure 2a-b. Circuit diagram and final circuit with fretting motor, analog/digital inputs, and Raspberry Pi/Arduino

Discussion:
After wrapping up the prototype, there is a long list of changes that could be made to improve its
performance. In looking at this list, there are three key lessons to be learned to avoid similar problems in
future projects.
Mechanical prototyping is going to be a bottleneck for the project and should be first prioritised
over software/electrical work. Creating a clean CAD model and manufacturing parts will not only
take longer than expected but also has more unavoidable hurdles (e.g. limited machine shop hours
and lead times on ordered parts). Finally, the control scheme can’t be tuned easily until the
mechanical system is done.

Additionally, the mechanical design should be adjustable to allow for manufacturing tolerances
and unexpected design flaws. We ran into issues with getting the right spacing between

1.

Software Design:

Button pressed / rotate fretting

motor to reposition finger

m Button pressed / change mode "AC" entered / change mode

Command Line
Interface Control

Sensor Control UDP Control

Potentiometer rotated / turn Command entered / actuate specified motor

bowing motor to move bow

"AC" entered / change mode

Figure 3. Implemented state machine

rack/pinion gears as well as the right angle between the fretting finger and violin neck which
would have required remanufacturing to fix/maintain due to the rigid design.

Finally, while starting earlier and allowing for adjustments can help a lot, sometimes core
components (e.g. the crank-slider) will just not work and those central flaws need to be
discovered early on rather than only when the full product is assembled. Instead, the design
should be broken into simplified, subcomponents which can be separately tested easily. For
instance, this philosophy was taken into approach with the code which had a modular design and
where non-critical features/minor bugs were pushed off to be implemented down the line.

Appendix A: Bill of Materials

Mechanism

Bowing Mechanism

Fretting Mechanism

Viclin Body

Part Description
515mm length ($0.17/mm)
Rail Part Diagram
Violin bow
Carriage Bart Diagram
Rail-Base Screws M2 x 12mm, 25 pack
Bow Grip-Bow Screw M3 x 30mmi;, 50 pack
Bow Grip-Carriage Screw M2 x 20mm, 25 pack
Rail-Base Nuts M2, 100 pack
Bow Grip-Bow Nut M3, 100 pack
Base
Bow Grip
Rack
Pinion gear
Pinion gear shaft hub Mounting hub
380:1 Micro Metal
Motor Gearmotor HP 6V
Mofor Base
Motor Mount Micro motor mount
Rail Support Base
Rail
Carriage 137 (§2.6117)
Pinion gear
Rack
Base
Finger
Pinion gear shaft hub Mounting hub
75:1 Micro Metal
Motor Gearmotor HP 6V
Motor Mount Micro motor mount
Encoder Encoder for Micro Motors
Tuners
Strings
Truss Rods
Tailgut
Vbody
Neck
Pegbody
Tailpiece
Bridge

Total:
Per team member

Price

$90.31
§22.99
§21.91
§7.44
§6.43
$6.09
52.06
§1.17
$0.00
§0.00
$0.00
$0.00
$0.00

$1585
§0.00
$0.00
$0.00
$33.83
52004
$9.00
5491
$0.00
§0.00
§0.00

$0.00
$0.00
§0.00
§27.52
§21.99
$14.99
§3.95
§0.00
$0.00
$0.00
$0.00
§0.00

$320.58
$106.86

g

e e R B R R T .- B R BRI % B % R SO A N R O

B e T D D R .- B T R

Source

McMaster

Old Town School of Folk Music
McMaster (1)/Lasercutting (1)

{Already have on hand)
McMaster

{Already have on hand)
{Already have on hand)
{Already have on hand)
Lasercutting
Lasercutting
Lasercutting
Lasercutting

Lab Kit

Poilolu
Lasercutting
Lab Kit
Lasercutting
McMaster
McMaster
McMaster/Lasercutting
McMaster
Lasercutting
Lasercutting
Lab Kit
Lab Kit
Lab Kit
Lab Kit
Amazon

Oid Town School of Folk Music

Amazon

Amazon

3D Printing
3D Printing
3D Printing
30 Printing
3D Printing

Figure 4. Screenshot of final bill of materials

Source Link

2820K114
Balafino Violin Bow
SE20K1
920958409
92095187
92095106
90592A075
90592A085
N/A

N/A
2662NS7
2662N13
1078

4724
N/A

289

N/A
972BKE
9728K31
2662N13
2662N57
N/A

N/A
1078

2361

289

4760

Grover ONB
Prelude String Set
Carbon Fiber Tubes
Tailgut

N/A

N/A

N/A

N/A

N/A

Appendix B: CAD

(a) Full assembly (b) Base for attaching mechanisms
(c) Bowing mechanism (d) Fretting mechanism

Figure 5. CAD of full assembly and subcomponents

Appendix C: Code
Note that code can also be found on GitHub here.

import signal
import socket
import argparse
import tty
import sys
import termios
import pdb

from gpiozero import Button, RotaryEncoder, Motor
import time, threading

Custom argparse class so can catch errors cleanly
class ArgumentParserError (Exception) : pass
class HelpRequestedError (Exception): pass
class ThrowingArgumentParser (argparse.ArgumentParser) :
def error(self, message):
raise ArgumentParserError (message)
def print help(self):
raise HelpRequestedError (self.format help() + "\n **Replace bootstrap.py with
/lockbranch**")

class InputReceiver () :
def init (self) -> None:
State machine setup
self.state toggle = False
self.state = "sensor control" # Initial case for when script first starts
self.power on = True # Keep main loop running by default

UDP setup

self.server socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)
self.server socket.setsockopt (socket.SOL SOCKET, socket.SO REUSEADDR, 1)
self.server socket.bind(('', 6667))

self.server socket.setblocking(0)

self.error Integral = 0;

CLI setup

self.sentence = ""

self.params = {"bow":"False","note":"0"}

self.param recast dict = {"a":"O0", "b":"1", "c":"2", "k":"5","on":True,
"off":False, }

self.argparser = self.build argparser ()
self.sentence = "" # Initializing sentence for CLI control
Interrupt handler for CLI
def state interrupt handler (signum, frame):
self.state toggle = True
signal.signal (signal.SIGINT, state interrupt handler)

Sensor setup
self.GPIO_setup ()

self.frettingMotor = Motor ("BOARD24", "BOARD26")

self.bowingMotor = Motor ("BOARD29"™, "BOARD31")

self.frettingEncoder = RotaryEncoder ("BOARD38", "BOARD40", wrap=False,
max_ steps=10000)

self.frettingEncoder.steps = 0

def

ThrowingArgumentParser (formatter class=argparse.ArgumentDefaultsHelpFormatter)

[la"lbl

def

def

def

|
o

self.desiredNote =
self.currentNote =

I
o

self.bowing = False
self.bowingDirection
self.strokeTime = 0
self.strokeStartTime =
self.strokeTotalTime =

self.toggleNote = Fals

build argparser (self):
argparser =

argparser.add argument
argparser.add argument
ety k]

return argparser

process_sentence (self,
new_params, unknowns =

new_params = vars (new_

for key in new params:
if new params[key]
new_ params [key
else:
new params [key
self.params = new_para
return new_params

stream commands (self,
print (f"Received {para
self.control system(st

GPIO_setup (self):
def state button callb
self.state_ toggle

def a button callback(
self.params['note'
self.stream comman

def b _button callback(
self.params ['note'
self.stream comman

def c _button callback(
self.params['note'
self.stream comman

0
5 # 5 seconds per stroke?

e # for testing

("--bow", help="On or off?", choices=['on',

("--note", help="Select note to play", choices=

sentence) :

self.argparser.parse_known_args (sentence.split ('

params)

== None:
] = self.params[key]

] = self.param recast dict[new params[key]]
ms

params) :
ms}. Streaming now.")
r (params))

ack (channel) :
= True

channel) :
]:IOI
ds (self.params)

channel) :
]:vlv
ds (self.params)

channel) :
]=|2v
ds (self.params)

def bow input callback pressed(channel) :

self.params ['bow']
self.stream comman

= 'True'
ds (self.params)

def bow_input callback released(channel):

self.params ['bow']
self.stream comman

State toggle button
self.state button = Bu

= 'False'
ds (self.params)

tton ("BOARD1O", pull up=False) # pulled low by default

self.state button.when pressed = state button callback

def

def

def

Note A
self.A Button = Button ("BOARD11", pull up=False) # pulled low by default
self.A Button.when pressed = a button callback

Note B
self.B Button = Button("BOARD13", pull up=False) # pulled low by default
self.B Button.when pressed = b button callback

Note C
self.C Button = Button ("BOARD15", pull up=False) # pulled low by default
self.C Button.when pressed = c_button callback

Bow toggle

self.bow input = Button ("BOARD16", pull up=False)
self.bow_input.when pressed = bow_input callback pressed
self.bow_input.when released = bow_input callback released

switch state(self):
self.state toggle = False
if self.state == "cli control":
Reset CLI
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.orig settings)
Set up GPIO
self.GPIO_setup ()
Switch state
self.state = 'sensor control'
elif self.state == "sensor control":
Reset GPIO pins
self.state button.close()
self.A Button.close()
self.B Button.close()
self.C Button.close()
self.bow input.close ()
Save orig CLI and then set up custom CLI
self.orig settings = termios.tcgetattr(sys.stdin)
tty.setcbreak (sys.stdin)
Switch state

self.state = "udp_control”
elif self.state == "udp_control":

Switch state

self.state = "cli control”

print (f"--Switching state to {self.state}--")

delete detected(self):
x=sys.stdin.read (2)

if x == "[3":
x=sys.stdin.read (1)
if x == "~":
self.stream commands (self.process sentence("--note a"))

self.power on = False

termios.tcsetattr(sys.stdin, termios.TCSADRAIN, self.orig settings)

else:
print ('ignoring special char')
else:
pass

get text (self):
char=sys.stdin.read (1)

if char == chr(27):
self.delete detected()

elif char == chr (10):
print ("")

self.stream commands (self.process_sentence (self.sentence))
self.sentence = ""
else:

print (char,end="", flush=True)
self.sentence+= char

def main(self):
print ('--—-——-—-- State machine launched-------- ")
print (f'--Switching state to {self.state}--")
while self.power on:
Match case to switch between states
match self.state:
case 'cli control':
try:
self.get text()
Check for state switch
if self.state toggle:
self.switch state()
except ArgumentParserError as e:
self.sentence = ""
print (str(e))
fexcept:
#termios.tcsetattr(sys.stdin, termios.TCSADRAIN,
self.orig settings)
#print ('error')

case 'sensor control':
if self.state toggle:
self.switch state ()

case 'udp_control':
try:
dataFromClient, address = self.server socket.recvfrom(256)
print (dataFromClient.decode ())

self.stream commands (self.process sentence (dataFromClient.decode()))
except:
pass

if self.state toggle:
self.switch state ()
else:
print ('Powering off')
self.server socket.close()

def bow_stroke (self):
self.bowingDirection = not self.bowingDirection
#print ('thread started')
t = threading.Timer (5, self.bow_ stroke)

if self.bowing:
t.start ()
if self.bowingDirection ==
print ("bowing forwards")
self.bowingMotor.forward (speed=0.25)
else:
print ("bowing backwards")
self.bowingMotor.backward (speed=0.25)
else:
self.bowingMotor.stop ()
t.cancel ()

def control system(self, command) :
command = eval (command)

- bow stuff -----------
if isInstance (command['bow'],str):
new bow command = eval (command['bow'])

else:
new bow command = command['bow']

#print (new bow command)

#pdb.set trace ()

if (new_bow command != self.bowing) & (new _bow command == True) :
#fprint ('if worked')
self.bowing = True
self.bow_stroke ()

elif new bow command == False:
#print ('stopping')
self.bowing = False

- note stuff-----------
self.desiredNote = eval (command['note'])
if self.desiredNote & self.desiredNote!= self.currentNote:

note increment = 220/4*2

desiredNoteCount = self.desiredNote * note increment
currentNoteCount = self.frettingEncoder.steps

error = desiredNoteCount - currentNoteCount

while abs(error) != 0:

if error > 0:
self.frettingMotor.forward (speed=0.4)
else:
self.frettingMotor.backward (speed=0.2)
currentNoteCount = self.frettingEncoder.steps
error = desiredNoteCount - currentNoteCount
print ("Error: ", error) # debugging
print ("currentNoteCount: ", self.frettingEncoder.steps) # debugging

self.frettingMotor.stop ()
self.currentNote = self.desiredNote
print (self.frettingEncoder.steps)
if name == " main_
primaryInputReceiver = InputReceiver ()
primaryInputReceiver.main ()

