
Mark Kallos, Ricardo Alfaro, Jake Glick

Bear Boost Manual
The Bear Boost scooter was designed to provide a simple, safe, and convenient urban

transportation option for people like students.
The scooter was designed to be simple and intuitive so that anyone could ride it. The

user ensures that the battery is connected by checking to see if any of the LED lights on the
handlebars are lit. If not, the user can connect it under the wooden scooter deck. With the green
LED light lit, the scooter is in “standby” mode where throttle input will not activate the motor. The
user can press the left button to put the scooter in a drive mode. The yellow LED represents
“comfort” mode, while the red LED represents “performance” mode. The right button toggles
between these two drive modes. Comfort mode provides a gentle throttle response while
performance mode gives a direct throttle response. The user can activate their desired drive
mode then stand on the scooter and twist the right throttle handle. The left hand brake lever can
be used to slow down. While not being used or while charging, the user can disconnect the
battery under the deck.

Before designing and building the scooter, a few success metrics were established. The
first being safe and repeatable functionality which was certainly achieved. We wanted the
scooter to weigh under 40 pounds and the final design weighs 26 pounds. The range that we
desired from the scooter was 5 miles at the least, and the final scooter has a range of 6.7 miles.
We also wanted the scooter to be able to reach a top speed of at least 12 miles per hour and
the final design reaches around 14 miles per hour.

Using equations 1 and 2 from above, we decided a 350 watt motor would be sufficient to
maintain velocity at the max slope we decided of 10 degrees. Equations 3 and 4 were used to
determine which size battery to get. A 10 amp-hour battery would theoretically provide enough
charge to have a 9.6 mile range which, accounting for losses, would be sufficient for our uses.
Equations 5 and 6 were used to determine the max force on the front and rear wheel bearings
(in the worst case scenario of the rider standing directly over them) with a factor of safety of 1.5.
Equations 7 and 8 were used to choose the bearing mechanism for the steering. With a max
axial force of 1.8 kN and a max radial force of 800N, we decided a much cheaper and easier to
manufacture option would be to use bushings rather than bearings.

We decided to incorporate a brushless direct current (BLDC) hub motor to minimize
drivetrain losses as well as have longer term reliability and quieter operation. However, since
BLDC motors don’t have the mechanical commutation that brushed motors do, the commutation
must be handled by electronics or software. We elected to handle this electronically using the
motor controller that was designed for and sold with our motor. Our motor uses three hall effect
sensors to determine the position of the rotor and communicates this to the motor controller.
The motor controller uses these signals to cycle power to each of the coils which keeps the
motor spinning in the same direction. We elected to use this motor controller and simply
command it with our ESP32 as the controller was already designed to function with our motor.

After completing this project for ME 102B, our group believes we did some things well
and that there were some other things we could improve upon in the future. Splitting up the
workload so that each person worked more specifically on the parts of the project they were
strong in really helped manage the workload and improve our efficiency. The due dates for the
deliverables helped us spread out the work over the semester. We also did a lot of the
manufacturing together which allowed us all to collaborate on any design decisions and
brainstorm solutions to problems we came across. We could improve upon our planning and
communication outside of work hours. Our greatest shortcoming was that we left very little time
for manufacturing. A lot of small problems and design decisions that we didn’t anticipate needed
to be fleshed out toward the tail end of manufacturing which left us very little time to finish the
project. We should’ve anticipated complications and began working on manufacturing much
earlier to leave extra time for us to solve these problems and ensure our scooter worked as
intended.

Appendices
A1. BOM

Ite
m Item Name Description

Purchase
Justification

Serial
Number /

SKU
Price
(ea.) Quantity

1

Brushless Hub
Motor Kit

350W Motor, rear wheel,
motor controller, throttle,
etc.

Main power
transmission
components and
required driver

B092DD31L9

$ 132.99 1

2

1/8" Aluminum
24" x 24" 5052
Sheet Plate with
Vinyl PVC
Coating one
side

24" x 24" 5052 1/8" .125"
aluminum sheet stock

Chassis 16263663935
8

$ 45.60 1

3
Multipurpose
6061 Aluminum
Round Tube

0.065" Wall Thickness, 2"
OD, 3'Length

Steering Rod 9056K83

$ 48.07 1

4
Multipurpose
6061 Aluminum
Round Tube

1/8" Wall Thickness, 3" OD,
1' Length

Steering Stem 9056K41

$ 29.69 1

5

Zinc
Yellow-Chromat
e Plated Hex
Head Screw

Grade 8 Steel, 1/2"-13
Thread Size, 7" Long,
Partially Threaded, Packs
of 1

Fasteners
91257A738

$ 3.73 1

6 316 Stainless
Steel Washer

1/4" Screw Size, 0.281" ID,
0.625" OD

Fasteners 90107A029
$ 7.11 1

7

High Strength
Steel
Nylon-Insert
Locknut

Grade 8, 1/4" - 20 Thread
Size

Fasteners 90630A110

$ 4.49 1

8
Button Head
Torx Screws

Zinc-Plated Steel, 1/4"-20
Thread Size, 1" Length,
Packs of 25

Fasteners
90910A531

$ 7.54 1

9

Steel Belleville
Spring Lock
Washer,
Zinc-Plated

for M8 Screw Size,
8.400mm ID, 18.000mm
OD, Packs of 10 Fasteners 90127A128 $ 4.96 1

10
Multipurpose
6061 Aluminum
Round Tube

0.035" Wall Thickness, 7/8"
OD, 2 Feet Long Handlebar 9056K72 $ 18.68 1

11 Multipurpose
1/2" Thick x 1" Wide, 1/2

Inserts 8975K11 $ 4.34 1

6061 Aluminum Feet Long

12

Padyrytu 8 Inch
Electric Scooter
Tire 8X1 1/4
Inner Tire
200x45
Pneumatic Tire
Whole
Wheel-8MM Front Wheel for scooter

Front
Wheel/Bearings

B098XPJFR
Q $ 25.99 1

13

MDS-Filled
Easy-to-Machin
e Cast Nylon
Tube

Wear-Resistant, 1/2" Wall
Thickness, 3" OD, 2" ID, 1
Foot Long Bushings 4363N126 $ 45.97 1

14 21700 Lithium
Ion Battery

24V 10Ah 20Ah 250W
350W Lithium Ion Pack
Ebike Battery for Scooter
EBike Motor Power Source

2246469319
07 $ 149.99 1

15
Stainless Steel
Rod

5/16" x 12" Front Axle
Stock

5203872
$ 4.99 1

16 Brake
Cable+Housing

Cable and housing for the
brake system

Brake Cable CAB4190303
9K $ 26.45 1

17 Plywood
1/4x24x48"

Plywood sheet Scooter Deck N/A
$ 13.32 1

18
10k Ohm
Resistor

Resistor Electronic
Component

RSF200JB-7
3-10K $ 0.44 2

19
220 Ohm
Resistor

Resistor Electronic
Component

F1W122
$ 1.45 1

20 Huzzah32
Feather ESP32

Microcontroller Microcontroller 3405
$ 19.95 1

21
Green LED Dashboard light Electronic

Component
WP7113GT

$ 0.39 1

22
Yellow LED Dashboard light Electronic

Component
WP7113YD5
V $ 0.64 1

23
Red LED Dashboard light Electronic

Component
WP1503ID

$ 0.44 1

24 Digital Button Digital Input Sensor/Inputs SW-PB1-1BS
-A-PK1-A $ 0.38 2

25
LM2596 Voltage Regulator Electronic

Component
‎200102-10

$ 14.95 1

26 Brake Handle Handle Brake System HB331 $ 12.49 1

A2. CAD
Isometric View

Steering Rod View

Hub Motor/Drum Brake

A3. Code
#define motorPin 26
#define throttlePin 15
#define buttonPin 12
#define powerPin 14
#define greenPin 32
#define yellowPin 33
#define redPin 27

const int freq = 5000;
const int motorChannel = 1;
const int resolution = 8;

int state = 0;

const int throttleThresh = 90;
const int increment = 1;
const int minThrottle = 90;
volatile int actThrottle = minThrottle;
volatile int desThrottle = 0;

hw_timer_t * timer0 = NULL;
portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;
hw_timer_t * timer1 = NULL;
portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;

volatile bool buttonPressed = false;
volatile bool powerPressed = false;
volatile bool buttonRecently = false;
volatile bool updateMotor = false;

void IRAM_ATTR isr() {
buttonPressed = true;

}

void IRAM_ATTR isr1() {
powerPressed = true;

}

void IRAM_ATTR onTime0() {
portENTER_CRITICAL_ISR(&timerMux0);
updateMotor = true;
portEXIT_CRITICAL_ISR(&timerMux0);

}

void IRAM_ATTR onTime1() {
portENTER_CRITICAL_ISR(&timerMux1);
buttonRecently = false;
portEXIT_CRITICAL_ISR(&timerMux1);
timerAlarmDisable(timer1);

}

void setup() {
pinMode(throttlePin, INPUT);
pinMode(buttonPin, INPUT);
pinMode(powerPin, INPUT);

attachInterrupt(buttonPin, isr, RISING);
attachInterrupt(powerPin, isr1, RISING);

ledcSetup(motorChannel, freq, resolution);
ledcAttachPin(motorPin, motorChannel);

Serial.begin(115200);

timer0 = timerBegin(0, 80, true); // Motor Update timer
timerAttachInterrupt(timer0, &onTime0, true);
timerAlarmWrite(timer0, 12000, true);
timerAlarmEnable(timer0);

timer1 = timerBegin(1, 80, true); // Debounce timer
timerAttachInterrupt(timer1, &onTime1, true);
timerAlarmWrite(timer1, 1000000, true);

pinMode(redPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(greenPin, OUTPUT);
digitalWrite(greenPin, HIGH);
digitalWrite(yellowPin, LOW);
digitalWrite(redPin, LOW);

}

void loop() {
setLED();

switch (state) {

case 0: // OFF state

if (powerPressEvent()) {
activateSystem();
state = 1;

}
break;

case 1: // Comfort Idling state
desThrottle = map(analogRead(throttlePin), 0, 4095, 0, 255);
if (buttonPressEvent()) {
state = 2;

}
if (powerPressEvent()) {
deactivateSystem();
state = 0;

}
if (desThrottle > throttleThresh) {
startMotor();
state = 3;

}
break;

case 2: // Performance Idling state
desThrottle = map(analogRead(throttlePin), 0, 4095, 0, 255);
if (buttonPressEvent()) {
state = 1;

}
if (powerPressEvent()) {
deactivateSystem();
state = 0;

}
if (desThrottle > throttleThresh) {
startMotor();
state = 4;

}
break;

case 3: // Comfort Driving state
desThrottle = map(analogRead(throttlePin), 0, 4095, 0, 255);
if (desThrottle < throttleThresh) {
actThrottle = minThrottle;
coastMotor();
state = 1;

}
if (updateMotor) {

portENTER_CRITICAL(&timerMux0);
updateMotor = false;
portEXIT_CRITICAL(&timerMux0);

comfortMotor();
}
break;

case 4: // Performance Driving state
desThrottle = map(analogRead(throttlePin), 0, 4095, 0, 255);
if (desThrottle < throttleThresh) {
actThrottle = minThrottle;
coastMotor();
state = 2;

}
if (updateMotor) {
portENTER_CRITICAL(&timerMux0);
updateMotor = false;
portEXIT_CRITICAL(&timerMux0);

performanceMotor();
}
break;

default: // error state
Serial.println("STATE ERROR");
break;

}
}

bool buttonPressEvent() {
if (buttonPressed && !buttonRecently) {
buttonPressed = false;
buttonRecently = true;
timerAlarmEnable(timer1);
return true;

}
else {
buttonPressed = false;
return false;

}
}

bool powerPressEvent() {

if (powerPressed && !buttonRecently) {
powerPressed = false;
buttonRecently = true;
timerAlarmEnable(timer1);
return true;

}
else {
powerPressed = false;
return false;

}
}

void activateSystem() {
buttonPressed = false;
actThrottle = minThrottle;

}

void deactivateSystem() {
actThrottle = 0;

}

void setLED() {
if (state == 0) {
digitalWrite(greenPin, HIGH);
digitalWrite(yellowPin, LOW);
digitalWrite(redPin, LOW);

}
else if (state == 1 || state == 3) {
digitalWrite(greenPin, LOW);
digitalWrite(yellowPin, HIGH);
digitalWrite(redPin, LOW);

}
else if (state == 2 || state == 4) {
digitalWrite(greenPin, LOW);
digitalWrite(yellowPin, LOW);
digitalWrite(redPin, HIGH);

}
}

void startMotor() {
actThrottle = minThrottle;
ledcWrite(motorChannel, actThrottle);

}

void coastMotor() {
actThrottle = 0;
ledcWrite(motorChannel, actThrottle);

}

void comfortMotor() {
if (actThrottle < desThrottle) {
actThrottle = actThrottle + increment;

}
else {
actThrottle = desThrottle;

}
ledcWrite(motorChannel, actThrottle);

}

void performanceMotor() {
actThrottle = desThrottle;
ledcWrite(motorChannel, actThrottle);

}

A4. Additional Photos

