Mechatronic Design
Fall 2021 — Project Assignment #4
Final class deliverables

By: Maria Padilla, Levi Evans, Maikel Masoud

Opportunity

Who didn’t like candy as an award for getting a star in class? Our simple candy dispensing device for kids
is a perfect reward for the amazing kids. Dispenses just the right amount of candy and can fit in your
cabinet.

High Level Strategy
Plug into the power source.
Press button 1 when you are ready.
The device will check for refills and notify you.
Press button 2 for a special treat.
Hold the cup under the curved notch.
Enjoy!
Press button 2 again for a second round or button 1 to turn it off.

Comparison Between Initial and Final Design
Initial Design Final Design
PI control PI to control the amount Open loop and using time to
dispensed by controlling the control the dispensing amount
motor speed. (motor issue with starting speed)
Message displaying LCD using 12¢ pins but not Messages are displayed on the
enough pins in ESP32 computer screen (Arduino IDE)

Photos

Two limit switches (interrupters) Dispensing disk (3d
print)

Blue led indicator Shaft

Gear transmission
system

Dispensing funnel
(3d print)
Flanged bearing and

collar assembly Button switches

Force sensor

Aluminum standing posts
ESP32 and wiring

Laser cut acrylic plate

Supporting legs

R L ST

Motor coupler

Motor and bracket assemk

Function-Critical Decisions

The key calculation for our system as it relates to the function of the mechanism is whether our
motor has the necessary torque to rotate the gear train and the disk that rotates to dispense the candy. We
took into account the weight of the candy that is applied as a load to the disk when it is closed. We also
took into account the forces applied to the bearings by the system and vice versa. We also included the
force propagation through the gear train to the motor. Using this model and Newton’s Laws to derive the
force and torque equations that characterize the system, we were able to determine the maximum radial
forces applied to the bearing and confirm that the motor we considered using could supply the needed
torque and not stall out. We did this by solving the system of equations that we derived in Matlab. In these
calculations, we made the assumption that there would be a maximum of 150 grams of candy. We found
that the maximum radial load on the bearings would be well below the rating found in the specification
sheets for the ball bearings. Further, we found that half the motor stall torque given by the motor
specification sheet would be sufficient to drive the system under the given load. Thus, any motor more
powerful than that motor would be sufficient. We ultimately ended up using a stronger version of the
same motor from Pololu (https://www.pololu.com/product/4802). The stall torque of the motor we used
for the calculations is 0.127kg*cm at 6V. The stall torque of the motor we ended up using in our bill of
materials has a stall torque of 2.3 kg*cm at 6V, which exceeds the requirement set out in our calculations.
The specifications of the final motor used in the mechanism is given in Appendix B. The Matlab code
used and the results as well as our force/torque diagram are given in the Appendix A.

https://www.pololu.com/product/4802

What We Wish We Had Done Differently

We were able to get our machine to work consistently which was a great accomplishment. In
hindsight there are a few things that we would have done differently. After working with the limit
switches we thought it might have been a better solution to use a stepper motor to control the aperture. We
also wanted to incorporate an LCD instead of the IDE so that the user would know the status of their
dispense. The motor was mounted upright and attached to the bottom of one of the plates. We would have
liked to have built a better housing for the motor to make it more secure. Additionally we used a rigid
shaft coupler which worked fine for our machine, because the machine was quite flexible, but in a future
project, a flexible shaft coupler is ideal.

Force < 1 gram/ print "funnel is empty"

Press and Release Btn 1/move to state 1

State 0 State 1

Off state Checking Force Sensor

Press and release Btn 1/move to state 0
Force>1 gram & Btn 2 is pressed and released/
Turn on LED and move to State 2

State 2

Left Limit switch pressed/
stop motor and move to state 1

Dispensing
- Turning motor CC

Closing Dispenser
- Turning motor CCW

State 3

Right Limit Switch is pressed/
move to state 3 and keep track of time

Holding Open
- Stop motor

5 seconds elapsed from Right limit pressed/
Move to state 4

Figure 2: State Diagram

Left Limit Switch

Pololu 9.7:1 Metal Gearmotor
Right Limit Switch

:‘(4/7 cees sooc] ,1I.II vevee veves \Zlii‘[nl 4 B o—

DRVAA3I Button 2

IZ 22 It REEETIRTISIRY P22 Rith

L Force Sensor Resistor

Figure 3: Wiring Diagram

Appendices

Appendix A: Function Critical Calculations

Profile View of Assembly

A: Bottom bearing
B: First stage gear
C: Top bearing

D: Disk

Force Diagram of Assembly

Project Specification:

tAssumptions:

% All components including gears, bearing, disk and shaft have
negligable

% weight and the thrust bearing can withstand all the vertical loads.

d=0.075; %Distance from axis of rotation to center mass of the candy m
Pc=1.47; %Weight of coulmn of candy above the dispensing hcle N

E=5; %Ger ratio

L=0.05; %Distance between A, B, C and D in m

Tm=0.127/2; % half of Torgque from motor N.M

theta=20; %Gear pressure angle in deg

Rp=20/1000; %Pinion gear diameter m

% Calculations:
P=Tm/ {(Rp*cosd(theta)); %Gear force from the motor N

% Moments about point A = 0:
syms Rc x Rc ¥y RA X RA y

eqgl=(P*sind(theta) *L)+ (Rc_x*2*L) + (Pc*d)==0;
eq2=(P*cosd(theta) *L) + (Rc_y*2*L}==0;

Rc_X=double(sclve(eql,Rc x))%Reaction in x-dir at C
Rc_Y=double(solve(eq2,Rc y))%Reaction in y-dir at C

$Net forces egquilibrium:

eg3=Rc_X+RA X+ (P*sind(theta))

==0;
egq4=Rc_Y+RA v+ (P*cosd(theta))==0;

RA X=double(sclve(eq3,RA X))

RA Y=double(solve (eg4,RA Vv))

Rc X =

-1.6803

Rc Y =

=1.5875

Matlab Code to Calculate Forces

Motor Specifications
https://www.pololu.com/product/4802

Dimensions

Size: 25D x 63L mm
Weight: 95¢g
Shaft diameter: 4 mm?2

General specifications

Gear ratio: 9.68:1
No-load speed @ 6V: 1000 rpm3
No-load current @ 6V: 0.50 A4
Stall current @ 6V: 6.0 A2
Stall torque @ 6V: 2.3 kg-cm2

Max output power @ 6V: 59 W

Motor type: 6V, 6.0A stall (HP 6V)

Performance at maximum efficiency

Max efficiency @ 6V: 44 %
Speed at max efficiency: 810 rpm
Torque at max efficiency: 0.45 kg-cm
Current at max efficiency: 14A

Output power at max efficiency: 38W

https://www.pololu.com/product/4802

Appendix B: Bill Of Materials

Item Link Cost | Quantity
Leveling Mounts https://www.mcmaster.com/2284T52/ $3.23 1.0
Nylon 6/6 Plastic Hex Standoff https://www.mcmaster.com/92319A079/ $8.74 8.0
Nylon 6/6 Plastic Hex Standoff https://www.mcmaster.com/92319A776/ $5.60 4.0
Aluminum Female Threaded Hex Standoff https://www.mcmaster.com/95947A501/ $1.77 4.0
Female Threaded Hex Standoff https://www.mcmaster.com/91780A266/ $6.33 4.0
Clear High-Strength UV-Resistant Acrylic https://www.mcmaster.com/4615T93/ $8.00 5.0
18-8 Stainless Steel Button Head Hex Drive Screws https://www.mcmaster.com/97763A811/ $6.67 2.0
Heat-Set Inserts for Plastic https://www.mcmaster.com/94459A421/ $6.93 1.0
18-8 Stainless Steel Button Head Hex Drive Screws https://www.mcmaster.com/97763A262/ $7.82 1.0
Heat-Set Inserts for Plastic https://www.mcmaster.com/94459A380/ $9.69 1.0
Metal Gear - 8mm https://www.mcmaster.com/2664N333/ $38.10 1.0
Rotary Shaft 200 mm https://www.mcmaster.com/1265K37/ $15.50 1.0
Carbon Steel Set Screw Collar 4mm https://www.mcmaster.con/6056N12/ $1.75 3.0
Belleville Disc Spring 4mm https://www.mcmaster.com/96445K211/ $2.70 1.0
Belleville Disc Springs 2mm https://www.mcmaster.com/94065K 34/ $4.00 1.0
Carbon Steel Set Screw Collar 8mm https://www.mcmaster.com/6056N16/ $1.94 3.0
Flanged Ball Bearing 8mm https:/www.mcmaster.com/57155K496/ $8.47 3.0
Flanged Ball Bearing 4mm https://www.mcmaster.con/57155K437/ $9.53 3.0
Metal Gear -4mm https://www.mcmaster.cony/2664N314/ $14.80 1.0
Pololu 25D mm Metal Gearmotor Bracket Pair https://www.pololu.com/product/2676 $7.45 1.0
9.7:1 Metal Gearmotor 25Dx63L mm HP 6V with 48 CPR Encoder |https://www.pololu.com/product/4802 $36.95 1.0
https://www.amazon.con/dp/B091DNKSTV?psc=1&ref=ppx_yo2
Double Sided Tape dt_b_product_details $12.98 1.0
https://www.amazon.com/dp/B00B887TDBC?psc=1&ref=ppx_yo2
FORCE SENSING RESISTOR dt_b_product_details $12.99 1.0
https://www.amazon.com/dp/BO7THGCVZ1W?psc=1&ref=ppx _yo2
End-Stop Switch Module dt_b_product_details $10.95 1.0

Total

$427.22

Appendix C: CAD Images

Profile View of Our Candy Dispenser

Front View of Candy Dispenser

Top View

Isometric View of Candy Dispenser

Appendix D: Code

1

2

3 #include <ESP32Encoder.h>
4

5 #define
6 #define
7

8 #define
9 #define BIN 2 25

10 #define LED blue 21
11 //#define LED red 13
12 #define force 39

13 #define leftSwitch
14 #define rightSwitch
15

BTN 1 12
BTN 2 13

BIN 1 26

15
32

16 ESP32Encoder encoder;

17

18

19 int state = 0;

20

21 int holdOpenDelay = 500;

22 int holdOpenStartTime = 0;

23

24 1int lastlimitside = 1;

25

26 volatile bool buttonIsPressedl = false;
27 volatile bool buttonIsPressed2 = false;
28 volatile int LswitchIsPressed = false;
29 volatile int RswitchIsPressed = false;
30

31

32

33 // setting PWM properties ————————————————————————————

34 const int freqg 5000;
35 const int ledChannel 1

1;

35 const int ledChannel 1 = 1;

36 const int ledChannel 2 = 2;

37 const int resolution = 8;

38 const int MAX PWM VOLTAGE = 255;

39

40

41 //Initialization ====—=————————— o

42

43

44 void IRAM ATTR isrLeftSwitch() { // the function to be called when interrupt is triggered
45 LswitchIsPressed = true;

46}

47

48 void IRAM ATTR isrRightswitch() { // the function to be called when interrupt is triggered
49 RswitchIsPressed = true;

501}

51

52 void IRAM ATTR isrl() { // the function to be called when interrupt is triggered

53 buttonIsPressedl = true;

54}

55void IRAM ATTR isr2() { // the function to be called when interrupt is triggered

56 buttonIsPressed?2 = true;

57}

58 void setup() {

59 // put your setup code here, to run once:

60 Serial . begin(115200);

6l

62 pinMode (BIN 1, INPUT); // configures the specified pin to behave either as an input or an output
63 pinMode (BIN 2, INPUT); // configures the specified pin to behave either as an input or an output
64 pinMode (leftSwitch, INPUT);

65 pinMode (rightSwitch, INPUT);

66 pinMode (force, INPUT);

67 pinMode (LED blue, OUTPUT);

68 digitalWrite (LED blue, LOW);

69

69
70
71
72
73
74
75
76
77
78
79
80

95
96
97
98
99
-00
.01
.02

ESP32Encoder: :uselnternalWeakPullResistors
encoder.attachHalfQuad (33,

encoder.setCount (0) ; // set starting count value after

attachInterrupt (leftSwitch,
attachInterrupt (rightSwitch,
attachInterrupt (BTN_1,
attachInterrupt (BTN 2,

// configure LED PWM functionalitites
ledcSetup (ledChannel 1,
ledcSetup (ledChannel 2,

// attach the channel to the GPIO to be controlled
ledcAttachPin (BIN_1, ledChannel 1);
ledcAttachPin (BIN 2,

void loop () {

Serial.println(state);

switch (state)

case

stopMotorResponse () ;

Serial.println("Press BTN 1 to start");

if

0:

{

(b_10))

state =

1;

{

// Attache pins for use

isrLeftSwitch,
isrRightSwitch, RISING);
// set the
// set the

resolution) ;

resolution);

ledChannel 2);

as encoder pins

attaching

pin as the interrupt pin;

pin as the interrupt pin;

// Enable the weak pull up resistors

call fu
call fu

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

break;

case 1:

stopMotorResponse () ;

//Check to see if we should move back to state 0

if (b 1()) |
state = 0;

if (analogRead(force) <=
Serial.println ("Funnel
digitalWrite (LED blue,

}

else {
Serial.println ("Funnel
digitalWrite (LED blue,

if (b2 0)

state = 2; //dispense
Serial.println("Enjoy

break;

case 2:

Serial.println("Dispensin

MotorClockwise () ;

if (Rswitch()) {

1) |
is empty,
LOW) ;

is Full,
HIGH) ;

state

i)

gn) H

Please refill it then press BTN 2");

press BTN 2 to dispence");

138 holdOpenStartTime = millis();
139 state = 3;//Hold open state
140 }

141

142 break;

143

144 case 3:

145 stopMotorResponse () ;

146 if (millis() < holdOpenStartTime + holdOpenDelay) {
147

148 } else {

149 state = 4;

150 }

151

152 break;

153

154 case 4:

155

156 Serial.println ("Done Dispensing");
157

158 MotorCounterClockwlise () ;

159

160 if (Lewitch()) {

161 stopMotorResponse () ;

162 state = 1; //Idle ready state
163 }

164 break;

165

166 }

167

168}

169

170

171

172

173 //event checkers
174bool b 1 () {

175 if (buttonIsPressedl == true) {
176 buttonIsPressedl == false;
177 Serial.println("button 1 pressed");
178 return true;

179 }

180 else {

181 return false;

182 }

183}

184

185bool b 2 () |

186 if (buttonIsPressed2 == true) {
187 buttonIsPressed?2 == false;
188 Serial.println("button 2 pressed");
189 return true;

190 }

191 else {

192 return false;

193 }

194}

195

196

197 bool Rswitch () {

198 if (RswitchIsPressed == true) {
199 RswitchIsPressed = false;

200 return true;

201 }

202 else {

203 return false;

204 }

205}

206

207

208 bool Lswitch() {

209 if (LswitchIsPressed == true) {
210 LswitchIsPressed = false;
211 return true;

212 }

213 else {

214 return false;

215 }

216}

217

218

219

220 // Service Responses

221 void MotorClockwise () {

222 ledcWrite (ledChannel 2, LOW);

223 ledcWrite (ledChannel 1, MAX PWM VOLTAGE) ;
224}

225

226 void MotorCounterClockwise () {

227 ledcWrite (ledChannel 1, LOW);

228 lechrite(ledChannel_Z, MAX PWM VOLTAGE) ;
229}

230 void stopMotorResponse () {

231 ledcWrite (ledChannel 2, LOW);

232 ledcWrite (ledChannel 1, LOW);

233 digitalWrite (LED blue, LOW);

234}

