
Collin Nilsen
Varun Rao

Matthew Walker
ME 102B Final Project Report/Manual: Robotic Cat Toy

1. Opportunity
The opportunity that our product hoped to address is how we can keep our pet cats entertained

and happy when we are away and they are alone. Now more than ever, time is money, and we just can’t
afford to take as much time to relax and take care of our pets as we want to. The idea behind our product
was to create a robot that can interact with a cat and “play” with it, keeping it in a good mood and
rewarding it for participating. The machine we built will be able to run away from a cat, detecting
obstacles and moving out of the way to avoid collisions. When caught, the robot will drop a treat,
rewarding the cat for good behavior and for winning the game. There are a few similar products that exist
through a quick search on Amazon, however none of these products seem to hit all the key points we
would like to. For example, some cat toys are remote controlled and thus still require human intervention,
whereas other cat toys run on their own but don’t drop treats to reward the cat.

2. High Level Strategy
When turned on, the robot can drive around a room on two drive wheels and a third caster wheel,

navigating obstacles. We would have liked to implement collision avoidance, but we found this quite
difficult given our limitations, and were instead able to implement collision detection and rerouting such
that the robot would not hit an obstacle after it has hit it the first time. While we initially assumed a speed
of 3mph, we measured it move across an 8ft pool table in 2 seconds, resulting in a speed of about 2.7mph.

In order to distinguish between a collision and being “caught” by a cat, the robot uses a video
game joystick, with two analog and one digital input, attached to a 3-D printed plastic dome that contains
all the necessary parts of the robot. When the dome is bumped, the joystick is moved and the direction
from which the impact came is known to the robot. When the button is clicked, the robot knows that it has
been caught and activates a servo motor to move a trap door that drops a single treat to the cat. In order to
prevent the cat from abusing the robot to get extra treats, the robot will go into a sleep state when it is
caught, which does not allow the cat to “catch” it again until a certain time has passed.

Finally, in the event that the robot is not caught by the cat in a certain amount of time, it will stop
moving and play a noise in order to alert the cat to its location. If the cat does not find the robot, it will go
to sleep.

3. Integrated Physical Device + Subsystem Labels

4. Function-critical Decisions and Calculations
- Joystick calculations and observation:

- The dome has about 20mm clearance in each horizontal direction. This means, if it hits an
obstacle hard at an angle in any direction, the joystick will not shear off, as its total
angular movement will be limited by the dome hitting the wooden base, not by the
joystick itself bottoming out.

- We want to find at what angle the joystick button will activate if a horizontal load is
applied. This is complex because our “dome” isn’t a perfect hemisphere. We find that if a
vertical force is applied around a 5cm diameter circle on top of the dome, the button will
activate. Outside of that, the joystick will move.

-
- Bearing calculations and observations:

- Front casters are rated to 8kg, as they are meant for mounting underneath garbage cans
- The caster consists of a steel bearing 10mm in diameter supported by 8 bearings 2mm in

diameter rolling in a plastic cup.
- Limiting factor is the plastic bearing cup, as it is less hard than the steel bearings, which

would lead to pitting and poor rolling performance over time.
- Even if a cat weighing 4 kg were to pounce on it, the bearings wouldn’t fail.

- Motor calculations:
- Total Weight = 1kg
- Wheel radius = 3.5cm
- Approximate desired speed = 6km/hr = 1.66 m/s
- Acceleration desired - get to top speed in 5 sec = 0.33m/s^2
- T = F*a = 1kg * 3.5cm * 0.33 m/s^2 = 1162g*cm

- Motor spec from P3: 800g*cm at 3V (We will be running the motors on 4xAAA batteries
which will be 6V. This is within spec for the motors.

- Using 2 motors will output 1600g*cm torque, giving ~1.37 FS
- Additional design considerations:

- All holes in CAD were M3 to simplify hardware. Screws were used to attach motor
mounts to the wood base and to attach joystick to joystick mount.

- Wood base was cut with a Dremel router. Having a wood base allowed for faster and
easier modifications than a 3D printed base.

- The dome was designed with its center of mass to be exactly at the pivot, so that it would
default to a resting position that would not activate the joystick. We set a threshold
joystick value for the interrupt so the dome swaying slightly during acceleration would
not set off the joystick interrupt.

5. Updated Circuit and State-transition Diagrams

6. Reflection
For us, a strategy that we would not have been able to complete our project without was having

access to a 3-D printer. This allowed us to custom-fabricate several necessary parts on our project that
were lighter and less labor-intensive to make than if we had machined them in the machine shop.

Another strategy that also worked well for us was learning how to solder, which was very useful
in the final prototype because it allowed for smaller, more organized interior systems which fit under the
shell. We tried to make our project as compact as possible, with the fewest extraneous wires. Rather than
having multiple wires dangling around, we tried cutting each wire to the smallest possible length and
soldering them directly, so they wouldn’t come dislodged when going over a bump. This allowed for a
robust construction that we (or a cat) could manhandle. During the project showcase, we encouraged the
Dean of the College of Engineering to kick our robot, showing that it would keep working under a variety
of loading conditions.

The main thing that we wish we would have done differently was work in a more stable way.
Creating an organized timeline of design, manufacturing and testing during the first few weeks of the
project would have greatly simplified our workflow. The final thing we wish we had done differently,
which we greatly encourage other students to do, is to stay away from the IMU. We had so many
problems with the MPU-9250 included in the kit because they were extremely easy to break, and when
they were working, they were unreliable at best. We went through 4 IMU units in testing.

Appendix
A. Complete Bill of Materials
B. Final Product Images
C. CAD Images
D. Event-Driven Programming Code Screenshots

A. Bill of Materials

Item Qty Cost Listing name/Source Link CAD Link?

ESP32 1 Kit HUZZAH32 Feather Microcontroller link

Speaker 1 Kit Mini Loudspeaker 28 x 5 mm circle
(diameter x
thickness)

Joystick 1 $10 for 6 PS2 Joystick game controller Link

Motor
Controller

1 DRV8833 Dual Motor Driver Carrier

Motor 2 Already
have

Perseids Chassis Encoder Wheels
Battery

Wheel: (6 cm
(diameter) x 2.7
cm (thickness)

Wheel 2 Already
have

Battery/ Battery
Pack

1 Already
have

Encoder 2 Already
have

Caster Wheel 1 $6.49 Self Adhesive Caster Wheel 1.1 in x 1.8 inch
baseplate, 0.55
inch from bottom
of baseplate to tip
of ball

MPU9250 Gyro
Sensor

1 Kit IMU

Metric
Hardware

ma
ny

$20 Metric Screw Set

Servo Got in Lab Fitec FS90 Servo

https://microkit.berkeley.edu/huzzah32-feather-microcontroller/
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/3405%20ESP32%20Feather%20HUZZAH
https://microkit.berkeley.edu/mini-loudspeaker/
https://www.amazon.com/dp/B094HRM72Z?psc=1&ref=ppx_yo2_dt_b_product_details
https://grabcad.com/library/ps2-joystick-module-1
https://microkit.berkeley.edu/motor-driver/
https://www.amazon.com/perseids-Chassis-Encoder-Wheels-Battery/dp/B07DNXBFQN/ref=asc_df_B07DNXBFQN/?tag=hyprod-20&linkCode=df0&hvadid=312099728598&hvpos=&hvnetw=g&hvrand=1404072519238078551&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9032083&hvtargid=pla-524161075323&psc=1
https://www.amazon.com/perseids-Chassis-Encoder-Wheels-Battery/dp/B07DNXBFQN/ref=asc_df_B07DNXBFQN/?tag=hyprod-20&linkCode=df0&hvadid=312099728598&hvpos=&hvnetw=g&hvrand=1404072519238078551&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9032083&hvtargid=pla-524161075323&psc=1
https://www.amazon.com/Adhesive-Stainless-Universal-Rotation-Furniture/dp/B08YYQ6TGK/ref=sr_1_4?crid=3PLB7YXL32Y3B&dchild=1&keywords=tiny%2Bcaster%2Bwheels&qid=1635359076&sprefix=tiny%2Bcaster%2Caps%2C213&sr=8-4&th=1
https://microkit.berkeley.edu/inertial-measurement-unit-imu/
https://www.amazon.com/Assortment-AETTL-Stainless-Assorted-Wrenches/dp/B098ND1GW8/ref=sr_1_2?keywords=metric+screw+set+aettl&qid=1638854890&sr=8-2
https://www.pololu.com/product/2818

Wire and Solder N/
A

Got in Lab

Custom Fabricated Parts

Base 1 $2 Cut with a router from ¼ in plywood

Dome 1 $3 3D printed

Treat holder 1 $1 3D printed

Motor Mount 2 $1 3D printed

Joystick Mount 1 $1 3D printed

Servo arm 1 $1 3D printed

B. Final Product Images

C. CAD Images
Full Assembly Front:

Full Assembly Rear:

Updated mechanical connection between joystick and dome. The new mount is a secure press fit that
reassuringly snaps into place. The dimensions of the snap fit are shown in the image below.

Updated dome shape. Created with lofts instead of extrude+fillet. Shallower angle at the base allows for
better pivoting around the joystick when hitting obstacles at low heights.

D. Code
#include <math.h>
#include <Arduino.h>
#include <ESP32Servo.h>
#include <MPU9250_asukiaaa.h>

//motors
#define M1R 26
#define M1L 25
#define M2R 15
#define M2L 32
#define SERV 13
//joystick
#define JOYX 12
#define JOYY 27
#define JOYB 14
//gyro
#define SDA_PIN 23
#define SCL_PIN 22
//speaker
#define SPKR 33

MPU9250_asukiaaa mySensor;
Servo myservo; // create servo object to control a servo

//VA
RIABLES///
int state = 0;

int turningThreshold = 10;
float gyroAngle = 0;
float gyroAngle0 = 0;
int targetAngle = 0;
//motor variables
const int freq = 5000;
const int M1R_Channel_1 = 2;
const int M1L_Channel_2 = 4;
const int M2R_Channel_3 = 6;
const int M2L_Channel_4 = 8;
const int Speaker_Channel = 10;
const int resolution = 8;
int MAX_PWM_VOLTAGE = 255;
int m = 0;
//servo variables
int pos = 0; // variable to store the servo position
//joystick variables
double joyx = 0;
double joyy = 0;
double joyx0 = 0;
double joyy0 = 0;
int joyb = 0;
bool buttonWasPressed = false;
double tiltAngle = 0;
double joyAngle = 0;
double joyAngle0 = 0;

bool tilted = false;

//timer variables
bool timerInter = false; // check timer interrupt
hw_timer_t * timer0 = NULL;
portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

//SETUP///////
//
//timer setup
void IRAM_ATTR timerTrigger() {
portENTER_CRITICAL_ISR(&timerMux);
timerInter = true; // the function to be called when timer interrupt is triggered
portEXIT_CRITICAL_ISR(&timerMux);

}
void startTimer(int secs) { //The timer simply counts the number of Tic generated by
the quartz. With a quartz clocked at 80MHz, we will have 80,000,000 Tics.
timer0 = timerBegin(0, 80, true); // divides the frequency by the prescaler:

80,000,000 / 80,000,000 = 1,000 tics / sec
timerAttachInterrupt(timer0, &timerTrigger, true); // sets which function do you

want to call when the interrupt is triggered
timerAlarmWrite(timer0, secs, true); // sets how many tics will you count to

trigger the interrupt
timerAlarmEnable(timer0); // Enables timer
Serial.println("timer started");

}
//button setup
void IRAM_ATTR buttonTriggered() { // the function to be called when button interrupt
is triggered
buttonWasPressed = true;

}

void setup() { // put your setup code here, to run once:
//Joystick and button inits
pinMode(JOYB, INPUT); // configures the specified pin to behave either as an input

or an output
pinMode(JOYX, INPUT);
pinMode(JOYY, INPUT);
joyx0 = analogRead(JOYX) - 2048;
joyy0 = analogRead(JOYY) - 2048 ;
attachInterrupt(JOYB, buttonTriggered, RISING);
//servo setup
myservo.setPeriodHertz(50); // standard 50 hz servo
myservo.attach(SERV, 500, 2400); // attaches servo to the servo object using default

min/max of 1000us and 2000us

//motor setup
ledcSetup(M1R_Channel_1, freq, resolution);
ledcSetup(M1L_Channel_2, freq, resolution);
ledcSetup(M2R_Channel_3, freq, resolution);
ledcSetup(M2L_Channel_4, freq, resolution);
ledcAttachPin(M1R, M1R_Channel_1);

ledcAttachPin(M1L, M1L_Channel_2);
ledcAttachPin(M2R, M2R_Channel_3);
ledcAttachPin(M2L, M2L_Channel_4);
setMotorPower(0, 0); //Stop both motors

//gyro setup
Wire.begin(SDA_PIN, SCL_PIN); //sda, scl
mySensor.setWire(&Wire);
mySensor.beginMag();
mySensor.magUpdate();
Serial.begin(115200);
//speaker setup
ledcSetup(Speaker_Channel, 1E5, 12);
ledcAttachPin(SPKR, Speaker_Channel);

}

void loop() {
//MAIN//////////
//
// put your main code here, to run repeatedly:
if (buttonWasPressed) {
buttonInterrupt();

}
updateJoyVals(); //Calculate joystick angle
if (tiltAngle < 200) {
tilted = false;

} else if (tiltAngle >= 200 && tilted == false) { //200 arbitrary threshold
JoystickInterrupt2();

} else {

}

if (timerInter) { // intteruptCounter will be 'true' when timer interrupt is
triggered (every second)

portENTER_CRITICAL(&timerMux);
timerInter = false;
portEXIT_CRITICAL(&timerMux);
TimerInterrupt();

}

switch (state) {
case 0: //Ready
setMotorPower(0, 0); //Stop both motors
break;

case 1: //Moving straight
setMotorPower(MAX_PWM_VOLTAGE, 0); // Move forward 100 % speed
break;

case 2: //cooldown
setMotorPower(0, 0); //Stop both motors
break;

case 3: //bored
setMotorPower(0, 0); //Stop both motors
break;

case 4:

state4();
break;

}

}
//FUNCTIONS/////
///
void updateJoyVals() {
joyx = analogRead(JOYX) - 2048 - joyx0;
joyy = analogRead(JOYY) - 2048 - joyy0;
joyb = digitalRead(JOYB);
joyAngle = (atan2(joyy, joyx) * 180 / 3.14);
tiltAngle = sqrt(sq(joyx) + sq(joyy));

}

void updateGyroVals() {
mySensor.magUpdate();
gyroAngle = 2 * (mySensor.magHorizDirection() - gyroAngle0);

if (gyroAngle > 180) {
gyroAngle = gyroAngle - 360;

} else if (gyroAngle < -180) {
gyroAngle = gyroAngle + 360;

}
}
void fixTargetangle() {
if (targetAngle >= 180) {
targetAngle = targetAngle - 360;

} else if (gyroAngle <= -180) {
targetAngle = targetAngle + 360;

}
Serial.print("targetAngle:");
Serial.println(targetAngle);

}
//ACTIONS/////
//
void playSound() { //play speaker
ledcWriteTone(Speaker_Channel, 1600);
delay(700);
ledcWriteTone(Speaker_Channel, 0);
Serial.println("play sound");

}
void moveServo() {
Serial.println("move servo");
myservo.write(45);
delay(1000);
myservo.write(135);

}

void setMotorPower(int power, int direct) {

switch (direct) {
case 0:
ledcWrite(M1R_Channel_1, 0);
ledcWrite(M1L_Channel_2, power);

ledcWrite(M2R_Channel_3, 0);
ledcWrite(M2L_Channel_4, power);
break;

case 1:
ledcWrite(M1R_Channel_1, power);
ledcWrite(M1L_Channel_2, 0);
ledcWrite(M2R_Channel_3, power);
ledcWrite(M2L_Channel_4, 0);
break;

case 2: //turn left
ledcWrite(M1R_Channel_1, 0);
ledcWrite(M1L_Channel_2, power);
ledcWrite(M2R_Channel_3, power);
ledcWrite(M2L_Channel_4, 0);
break;

case 3://turn right
ledcWrite(M1R_Channel_1, power);
ledcWrite(M1L_Channel_2, 0);
ledcWrite(M2R_Channel_3, 0);
ledcWrite(M2L_Channel_4, power);
break;

}
}
///INTERRUPTS/////
//

void JoystickInterrupt2() {
switch (state) {
case 0:
startTimer(30000000); //Start Bored Timer
state = 1;
break;

case 1:
updateJoyVals();//Calculate joystick angle
mySensor.magUpdate();
gyroAngle0 = mySensor.magHorizDirection();
Serial.print("joyAngle:");
Serial.println(joyAngle);
Serial.print("gyroAngle0:");
Serial.println(gyroAngle0);
if (joyAngle >= 0) { // hit from right
targetAngle = joyAngle - 135 ; //Set target angle

} else if (joyAngle < 0) { //hit from left
targetAngle = joyAngle + 135; //Set target angle

}
fixTargetangle();
state = 4;
break;

case 2:
playSound(); // same or different from “caught” sound
break;

case 3:
startTimer(30000000); //Start Bored Timer
state = 1;

break;
case 4:
break;

}
tilted = true;
Serial.print("state ");
Serial.println(state);

}

void buttonInterrupt() {
tilted = false;
Serial.println("button press");
switch (state) {
case 0:
startTimer(30000000);
state = 1;
break;

case 1:
timerStop(timer0);
startTimer(10000000); //Start cooldown timer
setMotorPower(0, 0); //Stop both motors
playSound();
moveServo(); //dispense treat
state = 2;
break;

case 2:
playSound(); // same or different from “caught” sound
break;

case 3:
timerStop(timer0);
startTimer(30000000);
state = 1;
break;

case 4:
timerStop(timer0);
startTimer(10000000); //Start cooldown timer
setMotorPower(0, 0); //Stop both motors
playSound();
//moveServo(); //dispense treat
state = 2;
break;

}
buttonWasPressed = false;
Serial.print("state ");
Serial.println(state);

}

void TimerInterrupt() {
tilted = false;
Serial.println("timeint");
switch (state) {
case 0:
break;

case 1:
playSound();

startTimer(30000000); //Restart Timer
state = 3;
break;

case 2:
timerStop(timer0);
state = 0;
break;

case 3:
playSound();
startTimer(30000000); //Restart Timer
break;

case 4:
playSound();
startTimer(30000000); //Restart Timer
state = 3;
break;
break;

}

Serial.print("state ");
Serial.println(state);

}

void state4() {
updateGyroVals();
if (gyroAngle < targetAngle - turningThreshold) {
setMotorPower(MAX_PWM_VOLTAGE, 2);
Serial.println("10");

} else {
if (gyroAngle > targetAngle + turningThreshold) {
setMotorPower(254, 3);
Serial.println("20");

} else { //"gyro interrupt"
state = 1;
Serial.println("30");

}
}

}

