Final Project Report

ME 102B: Mechatronic Design
Group 33: Eric Kang, Mirabelle Huang, Sebastian Baehr
Dec. 12,2021

The purpose of this device is to provide entertainment and set the mood for different occasions with its 6 different presets.
The different presets involve different LED patterns and predetermined panel angles. It’s a convenient and portable
product that enhances the mood for various environments.

Initially we wanted to have the LED pattern sync to the vibrations of the music but due to some mechanical issues with
the microphone that we bought we didn’t have enough time to get a new microphone and therefore could not sync the
LEDs to the music in some of the presets. Originally we planned to have multiple rows of LEDs on each panel but
unfortunately due to soldering and connectivity issues we had to just go with 1 strip each side. We also wanted to have a
laser originally but due to space issues within our electronic housing box and an immense amount of wiring we couldn’t
get the wires for the laser and motor to fit inside in time so we decided to take out the laser as well. The predetermined
panel rotation in some of the presets was supposed to be about 45 degrees, however, the encoder with the mega
microcontroller was too noisy and thus we tried to have the panels rotate for a certain amount of time until it reached
about 45 degrees and stop it but the issue we had with that was that we couldn’t get the motors to stop rotating. Since we
used the switch case function, the function would continuously run the code within the case that it was in so our panel
rotation function kept getting called, causing the panels to continuously rotate. We attempted to write a counter into the
cases that would only let the panel rotation function only be called once but sometimes the button would debounce and
skip a preset despite our code to prevent debouncing and this would then mess up the counter code as it’s dependent on
going through the states in order.

Strategies that worked well for our group was assigning specific work to teammates and asking if anyone needed help in
order to try to mitigate one person from being overly burdened with work. We also had everyone working on every part so
that we all were able to contribute to the mechanical, electrical, and software parts of the device. This way we all knew
what was going on with our project and understood all parts of it. What we wished we did differently was just start the
project earlier and allow more time for error and failure during the project because we ended up procrastinating some parts
of it which led to an immense amount of stress at the end. We also had issues with mechanical parts not working so we
wish we had tested them earlier or bought them earlier or bought extra to mitigate this.

Figure 1: Photos of physical assembly from back side (left) and front side (right).

2. Function Critical Analysis

Motors: Due to low noise needing to be emitted from the motors and having position control, a brushless DC motor with
a magnetic encoder was used for all 3 motors. Attempted control type is velocity PID control on the laser (LED) motor

since both a fast time response and low steady state error is wanted, and position PI control on the panel motors since the
desired time response will be underdamped and slow and to have low error at steady state. The torque on the panel motors
can be considered negligible since no external forces exist and the gravitational force of the panel acts on the axis of
rotation. The radial force on the panel motors is the weight of panels, but the ball bearings handle this force. The inertia of

+J

below the rated value for the motor and thus not a concern. Since the panels only need to rotate slowly, current draw is
also not a concern.

the panel motors must drive is/ ot =] T] = 388.69 g-inz. This causes the inertia ratio to be well

connector panel

For the laser (LED) motor, the calculations for torque and current draw are shown below.

Torque:

Total Inertia of Shaft 1

Jiot =T 1ep T iapconnector T3 Thar ¥ bearing T gear
J1ep = yearing =
J LED,connector 97.98 g in’
J,., =0.197 giin’
J =0.270 g-in’

gear
| | 23.79 mm

J,, = 98.781 g-in’

15 rmm

Max acceleration needed = 100 —-

2217 mim s
= = i rad
ihﬁmm L —]tota = (98.781 g-in2)(628 K)

H Tshaft=0.04N-m

3mm

Since motors are same size
=0.04N -m < Tl = 015N -m

T =T
shaft motor

FOS =3.75

Current: Running at 26.67% of stall torque, and stall current rated at 2.0 A:
Current Max = (2.0 A)(. 2667) = 533 mA

thes = 7.4V, but will be running on 9 V

P =1V = (533mA)(7.4V) = 3.95mW = Iexpected(9 V)
= 439mA

expected

Stall Current not exceeded

Push Button: The button is rated for 5A but will just connect to microcontroller and attach to 10 kQ pull-down resistor. It
will mount in a M16 hole on the front plate using M16 threads and nut on button. Is momentary since states will change
based on length of button press.

Auto-Gain Microphone: It has auto-gain amplification so detecting sound from far away and really close will be easier.
The audio reading has a max value of 2 V with 1.25 V DC bias, so the 5 V input pins on the MEGA 2560 will suffice to
read the values. The microphone casing will be mounted and glued to the mounting hole in the front plate.

LED Strips: They run on 9 V and 2 A, so they will be connected to the power supply of their own. The LEDs run on
Neopixel’s WS2812B chip allowing for individually addressable LEDs, and prevents having to PWM red,green, and blue
channels. They will be attached to the bottom plate of panels, and a hole exists for wiring to travel out of the panel.

Electrical Diagram: State Diagram

Patentiometer Rotates/
Change Brightness

State Description

State 0 OFF mode. LED panels OFF and @ 0°, laser (LED) OFF, all motors OFF, potentiometer OFF, Button LED OFF, Button ON

State 1 ON mode. LED panels w/ solid color and @ 45°, laser (LED) OFF, laser motor OFF, potentiometer ON, Button LED ON, Button ON

State 2 ON mode. LED panels w/ Color Cycle and @ 45°, laser (LED) OFF, laser motor OFF, potentiometer ON, Button LED ON, Button ON

State 3 ON mode. LED panels w/ LED Flash and @ 0°, laser (LED) OFF, laser motor OFF, potentiometer ON, Button LED ON, Button ON

State 4 ON mode. LED panels w/ Rainbow March and @ 45°, laser (LED) ON, laser motor ON @half speed, potentiometer ON, Button LED ON,
Button ON

State 5 ON mode. LED panels w/ Sliding Bar and @ 45°, laser (LED) ON, laser motor ON @half speed, potentiometer ON, Button LED ON, Button ON

State 6 ON mode. LED panels w/ Color Cycle and @ 0°, laser (LED) ON, laser motor ON @half speed, potentiometer ON, Button LED ON, Button ON

Appendix

Bill of Materials:

Item Name Description Price [ea.] Quantity Link to Item Notes

Adaftuit DC Motor 7V DC motor with $13.50 3 Adafiuit
magnetic encoder

DRV8833 Dual Motor Dual H-bridge motor $6.95) Pololu

Driver driver IC ' T
Neopixel LED strip Neopixel only requires a power,

LED Light Strips w/ individually $14.99 1 Amazon ground, and data wire
addressable LEDs.

Pololu Uni | Alumi 3 mm universal

N? otu Lniversat Afuminum mounting hub w/ set $5.95 3 Pololu

ounting Hub

screw
310 Pieces M2 x

M2 Bolts/Nuts 4mm/6mm/8mm/10mm/ $9.99 1 Amazon
12mm/16mm/20mm

Ulincos Momentary Push Momentary push

Button Switch button switch w/ LED $8.38 ! Amazon

P(.)t IK ohm 1/5W Carbon 1K ohm potentiometer $1.22 1 Digi-Key

Linear
Arduino

X{F r%f?l%i% microcontroller w/ $16.99 1 Amazon

& ATmegal6 chip

LitStar 9V 2A AC DC Power supply adapter

Power Supply (100-240V to 9V 2A) $11.99 ! Amazon

Uxcell MR63-2RS Deep 4 ball bearing w/ 3 $9.49 1 Amazon

Groove Ball Bearings mm ID/6 mm OD

https://www.adafruit.com/product/4416#technical-details
https://www.pololu.com/product/2130
https://www.amazon.com/gp/product/B09738FNN1/ref=ppx_yo_dt_b_asin_image_o02_s00?ie=UTF8&th=1
https://www.pololu.com/product/1078
https://www.amazon.com/gp/product/B07W6GMK58/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01I9KDTZK/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&th=1
https://www.digikey.com/en/products/detail/bourns-inc/PDB181-E420K-102B/3780675?s=N4IgTCBcDaIAoBEBCBGAHCgtAUQCxgAYBpTFAsJTAOQRAF0BfIA
https://www.amazon.com/gp/product/B00D9NA4CY/ref=ppx_yo_dt_b_asin_image_o07_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07ZM1FRVP/ref=ppx_yo_dt_b_asin_image_o07_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B082PPNR8C/ref=ppx_yo_dt_b_asin_image_o08_s00?ie=UTF8&psc=1

Item Name Description Price [ea.] Quantity Link to Item Notes

Objet VeroClear Objet .3D printing $0.34 /gram 388 Jacobs Used to print both the LED panels,
material and the laser mount

Objet Tango Black Objet .3D printing $0.34 /gram 46 Jacobs Used to print both the LED panels,
material and the laser mount

. Objet 3D printing Used to print both the LED panels,
Objet Support support material $0.14 /gram 140 b and the laser mount
Standard PLA Standard 3D printing $27.00 /kilogram 1 AnvCubic Used to manufacture the device

material for FDM

housing

https://store.jacobshall.org/products/polyjet-model-material-veroclear-rgd810-priced-per-gram
https://store.jacobshall.org/products/polyjet-model-material-tangoblack-priced-per-gram
https://store.jacobshall.org/products/objet350-support-material-sup705-priced-per-gram
https://www.anycubic.com/products/1-75mm-pla-3d-printer-filament

CAD Drawings:

Isometric Views

With Device Housing W/out Device Housing

Back Side

Close Up of Panel Assembly

e Connector for the encoder attached to the motor will point down in reality.
e Same assembly for both panels
Motor Hub

3mm Ball LED Wiring

Encoder Motor M2 Bolts .
Bearing Hole

LED Strip

Panel Connector

Spinning LED (Laser) Assembly

Isometric Close Up

Cross Section Close up of Top Section

LED {(Laser)

.H‘f\llutor Hub

I

Top Plate / Ball Bearing Hole for LED wires to pass
o though into hollow shaft

RH Helical Gear
.-

LH Helical Gear
-

¥ X
Motor Hub

™
Back Plate

Front Plate Cross Section

Button

p

—, Microphone

Close Up of Bottom Plate

Close up of Plate Connection

e Essentially the same on four corners at the bottom of the device.

Side Plate

4

Bottom Plate

e

Front Plate

-

Code:

-

ginclude <Arduinc . h>
#include <arduinoFFT._h=>
ginclude <=FastLED_h=>

LRI)

5

€ /

7 gdefine £ Interrupt pin 20 on Mega 2560

S gdefine LED BTN 22 4/ Pin to power LED in button

5 #define MIC IN RO /¢ Analog pin for microphone input

10 gdefine LEDR PIN 7 JS¢ Data pin to LEDS on Right Panel

11 gdefine LEDL_PIN € /4 Data pin to LEDS on Left Panel

12 gdefine LAS PIN Rl /4 Data Pin for Laser (LED) on topB

12 gdefine Bl 12 £ lst PWM pin connected to motor driwver for Motor 1
14 #define BRI 13 £ Ind PWHM pin connected to motor driver for Motor 1
15 #define Bl 10 ff lst FWH pin connected to motor driver for Motor 2
1le gdefine B2 11 ff 25t PWM pin connected to motor driver for Motor 2
17 gdefine Cl 8 £ lst PWM pin connected to motor driver for Motor 32
12 #define CZ 9 ff 2Zst FWH pin connected to motor driver for Motor 3

lg __

:.j __

21

23

z4 |// Button Check

25 gdefine debounce 100 ff ms debounce period to prevent flickering when pressing or releasing the button

2& gdefine holdTime 1000 ¢ ms hold periocd: how long to wait for press+thold event

28 fF LED modes

2% gdefine SBEMPLES £4 S Must be a power of 2

20 #define NUM LEDS 7

21l #define BRIGHINESS 255 £/ LED information

32 gdefine LED TYPE W52312B

32 |f#define COLOR ORDER =RE

24 #define xres 7 £/ Total number of columns in the display
35 gdefine yres 7 S Total number of rows in the displaywy

42 Ff Button wvariables
43 int buttonVal = 0;

; ff wvalue read from button
44 int buttonlLast = 07 /Y buffered wvalue of the button's previous state

45 long btnDnTime; £/ time the button was pressed down

42 long benUpTime; £f time the button was released

47 boolean ignorelp = false; ff whether to ignore the button release because the click+hold was triggered
45

4% int curr_State = 0; /4 Btate that deviece is currenlt in (Start off).

50 |int prev_State = 1: {4 State Device was in before being turned off.

51

5: R L

53 __

54

55 - fTariakles for Rotating Panels —--——————————

5E __

57

58 int period = 3000; ff Time period we want panel motos to run for in ms

55 lunsigned long time now = 0; // RActs as a timer (is set egual to millis)

&0

€l int counter = 0; S ¢ Counters used so motor only runs for specified periocd once

€2 int counter_subk = 0

(1) .

€% // Storage Objects

70 CRGE leds[NUM LEDS]; S/ Create LED Chject
71 arduinoFFT FFT = arduinoFET{); // Create FFT object

73 // For Sound Bar RBudioc Reactive Mode

74 doukle vReal [SRMPLES];

75 doubkle vImag[SRMPLES];

€ int Intensitylxres] = [}; J/f initialize Fregquency Intensity to zero

int Displacement = 1;

7% /f For LED Flashing Mode

20 unsigned long remTime = 0; Ff will store last time LED was updated

81 const long interwal = 1000; S/ interwval at which to blink (milliseconds)

22 bool is_red = false;

23

84 | //For Color Cycle Mode

25 uintf_t blendBate = 50; Jf How fast to blend. Higher is slower. [milliseconds]
8& CHSV colorStart = CHSV({%&,255,255); // starting color

57 CHSV colorTarget = CHSWV(1%2,63255,6255); // target color
28 CHSV colorCurrent = colorStart;

23

%0 | // For Rainbow March

51 uintf_t thisdelay = 40; Sf B delay walue for the seguence(s)

92 uint2_t thishue = 07 S/ Starting hue wvalue.

52 int2_t thisrot = 1; // Hue rotation speed. Includes direction.
94 uint2_t deltahue = L1; // Hue change between pixels.

35 kool thisdir = 05

L I

=/ '

ag

93 wvoid setup() {
100 delay(3000); // 3 second delay for recovery

101

102 Serial . begin(115200); // For Debugging

103

104 | pinMode (BTN, INDUT); /¢ Input for Button

105 pintlode (LED_BTN, COUTPEUT); // Output for LED in Button

108 pinMode (MIC_IN, INPUT); /¢ Input for microphone, analog]

107 //pinMode (LAS_PIN OUTPUT); // Cutput for Laser (LED) pin

108

105

11a pinMode (A1, OUTEUT) ff Set up PWM pins for motor comtrol

111| pinMode (B2, CUTPUT):
112 | pinMode(Bl, CUTPUT):
113 | pinMode (B2, CUTPUT):
114 | pinMode(Cl, CUTPUT):
115 | pinMode(C2, CUTPUT):

1lle

117 FastLED.addlLeds<LED TYPE, LEDR PIN, COLOR ORDER>(leds, WUM LEDS).setCorrection{ TypicallEDStrip)i // Initialize Right LED strips
1l1s FastLED.addLeds<LED TYPE, LEDL_PIN, COLOR ORDER> {leds, NUM LEDS) .setCorrection{ TypicallEDStrip); // Initialize Left LED strips
11% FastLED.setBrightness (BRIGHINESS); /¢ Default full brightness

120}

1z1

122
123

1zs
1239
130
121
132
133
124
135
13
137
138
135
140
141
142
143
144
145

=

woid loop() {
//f State Machine to define all 7 modes

switch (curr_State) {

case 0:

checkButton(); /¢ Check if button is pressed or held down

ff Turn motors off
analogWrite (Al 0);
analogWrite (A2 0);
analogWrice (B1,0);
analogWrite(B2,0);
analogWrite(Cl,0);
analogWrite(C2,0);

ffTurn all LEDS off

£ill solid{leds, NUM LEDS, CRGB::Black);

FastLED . show);
laserState(0);

//8erial println{curr State];
break;

case l:
counter_sub = 0;
checkButton() ;

Color_Set (CRGB: :Crimson); // Set Panel LEDs to Crimson

fflaserState (0); /7 Top laser

RotatedS(); // Botate panels roughly 45 degrees ——> will stay this angle for state 2

ff8erial println({analogRead (&1));

break;

case 2:
counter = 0; // Reset Counter
checkButtoni) ; Jf Check if button is pressed or held down
Color Cyclel); S/ Set panel's LED effect to Color Cycle
laserState (0], ff Top laser (LED) is off
f/8erial .println{curr_State);
break;

case 3:
checkButton() ; f/ Check if button is pressed or held down
LED FLASH(): S/ Set panel's LED effect to Flashing
fflaserState (0); // Top laser (LED) is off
Reverse45(); f/ Revert panels to face up
f/fSerial println{curr_State);
break;

case 4:
checkButton() ; f/ Check if button is pressed or held down
ChangeMe () ;

EVERY N MILLISECONDS (thisdelaw) {
rainbow _march();
FastLED .show();

}
S flaserState(l); ff Top laser
Rotateds(); /¢ Rotate panels roughly 45 degrees

ffSerial println{curr_State);

#f FastLED based non-klocking delay to update/display the segquence.
S/ Set Panel LED effect to Rainbow March

——* will stay this angle for state §

break;
case 5:
counter_subk = 07 S S Reset Counter
checkButton() ;
Sliding LED{randomZ(), 7);7 S# Set panel's LED effect to a S5liding Bar
fflaserState(l); Jf Top laser (LED) is on

/fSerial println{curr_State);

break;

case 6:

checkButton();
Color_Cycle(); fF Bet panel's LED effect to Color Cycle with Audioc Reactive Brightness
SflaserStateil); ff Top laser (LED) is on
Reverseds(); S/ Bevert panels to face up
211 ffSerial println{curr_State);
212 break;
213}
214 |}
215
216 |/

217 period, and change state appropiately. ————%
218 woid checkButton() {
219 // Read the state of the button

buttonVal = digitalRead(BIN);

/4 Test for button pressed and store the down time
if (buttonVal = HIGH && buttonbLast =— LOW && (millis({) - btnUpTime) > long({debounce)) {
btnInTime = millis{();

f/ Test for button release and store the up time
if (buttonVal == LOW && buttonlast == HIGH && (millis() - btnDnTime) > long(debounce)) {

225 {ignorellp == false) {
2320 if (curr_State == 0) {
221 curr_ State = 0;
232 digitalWrite (LED BTN, LOW); // LED off
233 } else if (curr_State == 1) {
234 curr_State = 2;
235 digitalWrite (LED BTN, HIGH); // LED on
23¢ } else if (curr_State == 2) |
237 curr State = 3;
238 digitalWrite (LED BTN, HIGH); // LED on
-} } else if (curr_State = 3) |
0 curr_State = &;
digitalWrite (LED BTN, HIGH); // LED on
} else if (curr_State == 4) {
curr_ State = 5;

digitalWrite (LED BTN, HIGH); // LED on

} else if (curr_State == 5) {

curr_State = &;

digitalWrite (LED BTN, HIGH); // LED on
} else if (curr_State == €) |

curr State = 1;

digitalWrite (LED BTN, HIGH); // LED off
}

else {

ignoreUp = false;
btnUpTime = millis{);

ff Test for button held down for longer than the hold time

if (buttonVal == HIGH && (millis{) - btnDnTime) > long(holdTime)) {

if (ecurr_State == 0) {
curr_State = prev_State; /f Turn on to previous state
digitalWrite (LED BTN, HIGH);

} else {
prev_State = curr_State; // Sawve previous on state
curr_State = 07 S Turn device off
digitalWrite (LED_BTN, LOW);

b

ignorelUp = true;
btnDnTime = millis{);

buttonLast = b’ut:t:a-hval;

noti

void laserState (int laser_ State)

{ //Controls if laser is on or

off

20 digitalWrite (LAS_PIN, laser_State); //Turn on/off laser
281

2s2 if (laser_State = 1) { ff Hove motor if in on state
283 analogWrite (C1, 150);

234 analogWrite (C2, 0);

285 } else { /4 Stop motor if device is off
286 analogWrite (C1, 0);

237 analogWrite (C2, 0);

zag |}

285 |}

asa |/

251

void Color_Set(CRGE setColor) {
£ill_solid(leds, NUM LEDS,
int pot_wal = analogRead(MIC IN);
int led_bright 0, 1024
FastLED.setBrightness(led_bright);

setColor);

map (pot_wal,

a

[/ BRead potentiometer input
, 255); // Map sound intensity to DWM brightness value

/f Set new brightness

300 FastLED.show();
201 |}
302 |/*
303 .
204
308
308
307
308 void Color_Cyeled){
305 EVERY_N MILLISECONDS (blendRate) { // FastLZD function that utilizes millis({);
310 static uintf_t k; // The amcunt to blend [0-255]
311 if (colorCurrent.h == colorTarget.h) { // Check if target has been reached
312 colorStart = colorCurrent;
313 colorTarget = CHSV({random8(),b255,255); // New random target to transition toward
314 k= 0; // reset k wvalue
315 1
3le
317 colorCurrent = blend(colorStart, colorTarget, k, SHORTEST_HUES); // Get next color that has a hue increment of k from current color
318 £i11_solid(leds, NUM_LEDS, colorCurrent); /¢ Fill all LEDS in leds object with new color
318 // Set first pixel to always show target color
32 k++; // Increment hue
32 FastLED.show();
}
324| int pot_val = analogRead (MIC IN); // Read potentiometer input
25 int led_bright = mapipot_val, 0,1024,0,255); // Map sound intensity to PWM brightness value
32¢ FastlLED.setBrightness (led_bright); // Set new brightness

FastLED show();

woid LED FLASH() {
unsigned long actTime = millis();
if {actTime - remTime >= interval) {
remTime = actTime;
if (lis_red) |
is_red = true;
£i11 _solid{leds, NUM LEDS, CHSV({random: (),
FastLED. showi);

else |

// Switch to random color

255,

/7 Switch to off
is_red = false;
£i11_solid(leds, NUM_LEDS, CRGB::Black);
FastLED. show();

int pot_val = analogRead (MIC_IN);
int led_bright = map(pot_val, 0, 1024,
FastLED.setBrightness (led_bright);

FastLED.showi);

= 0, 255);

/f Check if interval time has passed

285));

// Read potentiometer input

// Set new brightness

for state 4

void rainbow marchi) {

if (thisdir == 0) thishue += thisrot;

£i11 rainbow(leds, NUM _LEDS, thishue, deltahue);
int pot_wal = analogRead (MIC_IN);
int led bright = map(pot_wal, 0, 1024,
FastLED. setBrightness(led_bright);
FastLED.show{);

} // rainbow_marchi{)

a

, 285);

else thishue -= thisrot;

// Map sound intensity to PWM brightness value

// Increment the hue

/¢ don't change deltahue on she f£ly as it's too fast near the end of the strip.

/¢ Read potentiometer input

// Set new brightness

// Map scund intensity to DWM brightness walue

374 woid ChangeMe() [// B time (rather than loop) based demo sequencer. This gives us full control over the length of each sequence.

378

37¢ uint3_t secondHand = (millis{) / 1000) & 30; // Change '60" to a different walue to change length of the loop.
377 statie uinti_v lastSecond = 85; // Stavic variable, means it's only defined once. This is our 'debounce’ wariable.
278
375 if (lastSecond != secondHand) { // Debounce to make sure we're not repeating an assignment.
380 lastSecond = secondHand;
381 switch (secondHand) {
382 case 0: thisrot = 1; deltahue = §; break;
383 case S: thisdir = -1; deltahue = 10; breaks
384 case 10: thisrot = §; break;
385 case 15: thisrot = §; thisdir = -1; deltahue = 20; break;
386 case 20: deltahue = 30; break;
287 case 25: deltahue = 2Z; thisrot i break;
388 case 30: break;
EEE] }
280}
231
352} // ChangeMe()
393
354
395
39€
357
398
399
400
401
402 woid RotacedS{) |
403
404 if (counter == 0 && curr_State == 1) { // Turn motor foward if just switched to state 1
405 time_now = millis(); // Take the time when just switched to state 1;
408 counter = 2;
407} else if (countver_sub == 0 && curr_State = 4) { // Turn motor foward if just switched to state 4
408 time now = millis(); // Take the time when just switched to state 4;
408 counter_sub = 2;
210 }
411
412 int new_time now = millis();
413
414 if (new_time_now - time now <= 80) { // Move right panel motor at full speed for 80 ms.
415 analogirite (A1, 0):
416 analogiirite (A2, 255);
417
418 analogWrite(Bl, 0):
418 analogiirite (B2, 258);
420} else if (new_time now - time now <= 300) { // Move left panel motor at full speed for 300 ms.
221 analogirite (Al, 00
422 analogWrite (A2, 0);
423
424 analogirite(Bl, 0);
25 analogiirite {BZ, 288);
} else {

analogirite (Al, 0);
analogWrite (A2, 0);

analogWrite (Bl, 0);7
analogWrite (B2, 0);

]
]

435 void ReversedS() {
43¢
437 if (counter 0 && curr_State = 3) { // Turn motor backward if just switched to state 3
438 time mow = millis(); // Take the time when just switched to state 3;
439 counter = 2;
240 } else if (counter_sub = 0 && curr_State = €) { // Turn motor backward if just switched to state €
241 time mow = millis(); // Take the time when just switched to state &
242 counter_sub = 2;
243 }
444
445 Serial println{counter_sub);
446 int new_time_now = millis{);
447

448 if (new_time_mow - time_now <= 100) { // Move both panel motors at full speed for 100 ms.
445 analogiirite (Al, 258);
450 analogiirite (A2, 0);

452 analogiirite (Bl, 258);
453 analogiirite (B2, 0);
else |

455 analogiirite (A1, 0);
45¢ analogiirite (A2, 0):

-
o
-

458 analogirite (Bl, 0);
459 analogirite (B2, 0);

470 woid Sliding LED(CRCE o, int width) {
471 static uinc8_t hue = 0

473 // First slide the led in one direction
474 for ({int i = 0; i < NUM LEDS; i++) {

75 leds[i] = CHSV(huet+, 255, 255); // Set the i'th led to red
47¢ FastLED.show();

477 leds[i] = // Reset the i'th led to black

478 fadealll):

479 delay(10) s // Wait a little bit before we loop around and do it again
430 }

481

452
423
424
485
482¢
427
438
4839
430
4351
4352
433
454
495
43¢
437
458
499
500
501
502

503

// Wow go in the other direction.

for (int i = (NUM_LEDS) - 1; i >= 0; i--) {

leds[i] = CHSV{hue++, 255, 255); // Set the i'th led to red

FastLED show();

leds[i] = CRGE::Black; // Reset the i'th led to black

fadeall();

delay{10); /f Wait a little bit before we loop around and do it again
t
int pot_wal = analogRead(MIC_IN); /¢ Read potentiometer input

int led bright = map(pot_wal, 0, 1024, 0, 255); // Map sound intensity to FWM brightness value
FastlED.setBrightness (led_bright); /¢ Set new brightness
FastLED.show();

void fadealll) |

for {int i = 0; i < NUM_LEDS; i++) {
leds[i] .nscaleB (25005

