Mechatronics Design

Fall 2021-Project Assignment #4
Final Class Deliverables
Team Members: Tonya Beatty, Ryan Norris, Komal Thind

Opportunity

Whether it be for plumbing, electrical conduit, or structural applications, pipes and other members are
used in our everyday lives and inspecting for defects, problems, or other abnormalities as well as the
performance of maintenance is essential for their proper functioning. Our team found that there were
many internal pipe inspection robots on the market. However, there were very few external pipe
inspection robots that we could find. Therefore, our team decided to create a device capable of traversing
pipes externally so that we could help ensure these areas are being inspected and properly cared for as
well. We see our device as a technical demonstration for a platform that can be adapted to many
real-world applications such as maintenance, inspection, and surveillance, among others. By having a
system capable of detecting obstacles that could be in hard to reach or blinded areas, our current model
gives insight to a possible use a technician could have for our platform.

High Level Strategy Discussion

An easily manufacturable robot with a modular design currently capable of traversing across pipes up to a
45 degree angle. To ensure we had a modular design, we created 3 identical and symmetric subsystems
that could be easily worked on individually or incorporated altogether using a set of two rings. These
rings can be easily edited to make our pipe adjustable to a variety of different external diameters so that
we may inspect more than one pipe. Wheels were employed as our way of driving the system, relying on
friction to move along the pipes. We utilized all resources available to us to manufacture this design
including Jacob’s Hall and the CITRIS Invention Lab for 3D printing and Laser Cutting capabilities for
our device frame, gearhubs, and wheel hubs, as well as the Etcheverry Machine Shop to drill holes and
create flats on the brass rotary shafts used in the drive train. Additionally, we implemented PI control to
help account for any disturbances or noise our system encountered while running.

Fully Integrated System Breakdown

DC Motor (3)
Ultrasonic Sensor

/ J (Analog Sensor)

—] f .
\ 1
. - /‘ - S /'.»
Transmission /A J y 5N\ 5 [
4 B \ >N £ Shaft Collar
§ 1 /
i s S >
“! “

QI ;
\E\If-\‘ ‘Bellevllle Washer

Machined Brass
Rods

(to rigidly attach

gears & wheels)

Female Threaded C
Standoffs

—7.70n/Off Button
(Digital Sensor)

Design Notes:

lleville Washer . . 3 X
Shims when creating this design as we tried to

l‘ \es"“ﬂ Eollan Much care was taken into consideration
properly incorporate the tools and skills that
were taught throughout the course. This is

evident in the way we tried to properly structure

3D Printed
 Wheel hubs (3)

the system. For example, we have 12 bearings
3D Printed throughout the device. From the course, we
Geah SR learned that we needed to employ shims on both
sides of the bearings to try and reduce friction
as well as incorporate a belleville washer to

preload each bearing. Some additional design
Lasercut Motor

Mot considerations included machining the brass rods

so that our gears and wheels would be rigidly
attached to the system and evade slipping, using
threaded inserts in our 3D printed standoffs to
e ensure proper fastening, and the use of flexible

Bl \ 1 shaft couplings to reduce the load on the motors.
Screws & Nuts p

Top view of fully integrated subsystem

Function Calculations

Due to limited funding, we had to rely on motors borrowed from the Hesse staff. After a fair amount of
research, we were unable to find the specific model of motor used since none of the motors had part
numbers associated with them. Therefore, using a benchtop power supply, we drove our system to find
out where the motors would stall and found that they stalled at a 45 degree angle. Knowing our weight
was roughly 3 pounds, we were able to back calculate and find the stall torque to be 0.09 Nm.

If purchasing motors for a second iteration, we would apply a safety factor of 2 and purchase motors that
had a nominal torque of 1.8 Nm.

Circuit Diagram

MOTOR #1 SCHEMATIC w/ 1st HBRIDGE
RST HC-SR04
3v
e oo 5V Power
% veal veeay
25
a4 EN ND GNO| I
39 USS f VIN
36 12 L || —pne :;JJJTT; [—
4 27 [N aourz
5 33 Pl aoum
13 15 ur AISE
19 32 7 e
10k P 14 DRV8833
17 SCL! RE
21 SDA == ESP32
v
D
. VBAT|
34 EN
~ 2 E
12|
All 3 motors, 2 motor drivers (DRV8833) , 1 button, and 1 ultrasonic sensor (HC-SR04) are 45 3237
attached to one ESP32. Button, ultrasonic sensor, and the motor encoders are attached to 18 s
the 3.3 V power supply provided by the ESP32 and a separate 5V is used for the motors 19 32
(regulated by the HBridges). Pinouts for the motor encoder and motor drivers (Hbridge) are :5 ol
shown in attached schematics. 21 SoA

MOTOR #3 SCHEMATIC W/ 2ND HBRIDGE
MOTOR #2 SCHEMATIC w/ 1st HBRIDGE

MOTOR+ENCODER MOTOR+ENCODER

5V Power
DRV8833
ND GND - @ ND GND)

52 =
z VIN

w
AgE

W
AEE
10

ano!
zn

BOUTY souTi—{ |
IBIN2

B0UT2 e BOUT2 —
AouT2
AOUT: AOUTY

ESP32

Vel

uss
13

4 27 3
5 33 4 27

1 14 % 2

21 soA|

21 soA|

State Transition Diagram

l?““"’d’ /S tarf-

Pushe

CLIMPING

Q{7 Sonc
Samsor— tngpwd
- R("’/f\‘l’
What we would’ve done differently

From a mechanical design point of view, we would have done a few things differently. First and foremost,
we would ensure the material for the rotary shafts we plan on machining, is indeed suitable for machining.
We learned the hard way that high carbon steel is not the best material for machining through holes and
flats and had to very quickly order brass in order to machine in time for the showcase. Additionally, we
would have made the motor mount out of a thinner material so that more of the motor shaft was able to fit
into the shaft coupling. In the next iteration and if funding were not an issue, we would also have used
more powerful motors. The body of the device would be modified in order to allow for adjustability to
allow the device to climb members of different diameters. The transmission for each drive unit would be
expanded to have two wheels each for added stability. For the sensor, we would change the ultrasonic
sensor to a laser range finder in order to eliminate an issue we had with early triggering due to noise.
Lastly, we would have liked to heat shrink and better incorporate our electronics into our design so that
we had a more clean look.

Appendix:

1.

Bill of Materials
Material QTY
Shaft Collar Electroplate Ferronickel Shaft Lock Collar Ring Carbon Steel | 12
Hex
Brass Rods 6
6x15x5mm Shielded Chrome Steel Bearings 12
Brass, Knife Thread, #4", 4-40 Internal Threads, 0.375" Length (Pack of 36
25)
Xnrtop 4mm to 6mm Shaft Coupling 25mm Length 18mm Diameter 3
Stepper Motor Coupler Aluminum Alloy Joint Connector
Belleville Disc Spring for 6 mm Shaft Diameter, 6.2 mm ID, 12.5 mm OD, | 12
0.5 mm Thick
1074-1095 Spring Steel Ring Shim, 0.1mm Thick, 6mm ID 24
Black-Oxide Alloy Steel Socket Head Screw, 4-40 Thread Size, 5/8" Long | 36
18-8 Stainless Steel Low-Profile Socket Head Screws with Hex Drive, M3 | 6
x 0.5 mm Thread, 10 mm Long, Packs of 25
Medium-Strength Steel Hex Nut, Grade 5, Zinc-Plated, 1/4"-20 Thread 6
Size
Black-Oxide Alloy Steel Socket Head Screw, 1/4"-20 Thread Size, 3/4" 6
Long
Steel Hex Nut, Medium-Strength, Class 8, M3 x 0.5 mm Thread 12
18-8 Stainless Steel Low-Profile Socket Head Screws with Hex Drive, M3 | 12
x 0.5 mm Thread, 12 mm Long
Low-Strength Steel Hex Nut, Zinc-Plated, 4-40 Thread Size 15
Ultrasonic Distance Sensor 3V or 5V- HC S04 1
Huzzah ESP32 1
Push Button 1
DRV-8833 HBridge 2
10k Ohm Resistor 1
Plywood (0.25x127x24”) sheets 5

18

DC Motor w/ encoders (Donated- Brand Unknown)

Wheels (Donated- .75 inch Diameter)

Wheel Hubs (17 Diameter)

Standoffs (5 Diameter)

2. CAD Images

Wah
...’

G

A

Vm\
X2

Isometric View of whole system

I Wallace_event_final_code -

#include <E5P32Encoder.h>

J/Motors and sensor pins
#define BINL 1 26
#define BINI 2 25
#define BTN 1 32

#define ATN 2 14

#define BINZ2 1 33
#define BINZ 2 15
#define LIM BTN 34
#define POT 39

f/encoder pins and set up
#define Bl encl 36

#define Bl _enc2 4

#define & encl 21

#define A enci 27

#define B2 encl 13

#define B2 enci 12
ESP32Encoder encoderBl;
ESP32Encoder encoderd;
ESF32Encoder encoderB2;
volatile int countBl = 0F
volatile int curCountBl = 07
volatile int prevCountBl = 0F
volatile int counth = 0;
volatile int curCounth = 07
volatile int prevCountd = 07
volatile int countB2 = 0F
volatile int curCountB2 = 07
volatile int prevCountB2 = 07

Sfaltrasonic pins and variables
$define trig 22

#$define ech 23

#define sound spd 0.034 //cm/ua
volatile long duration;
volatile float distanceCm;
volatile float lastDistanceCm;
int thresh = 3;

J/Motor control wvariables
int omegaSpeedBl = O;
int omegaSpeedA = 07

Wallace_event final_code

int omegaSpeedB2 = 07
float KiB one = 1;

flecat KiR = 1:

float KiB two = 17

float sum upkE B one = 07
float sum upE A = 07
float sum upkE B two = 07
float sum dwnE B one = 0;
float sum dwnE A = 0;
float sum dwnE B two = 07
int KeB one = 50;

int KeR = 55;

int KeB_two = 507

int omegaDes = 10;

int B one = 0;7

int A = 07

int B two = 0;

byte atate = 07

S/linterrupt variables

volatile bool deltaT = falae; S/ check timer interrupt 2
int totallnterrupts iH /{ counts the number of triggering of the alarm
NULL;

hw timer € * timerl = HNULL;

hw timer t * timerd = NULL;

portMUX TYPE timerMux(= portMIX INITIALIZER UNLOCEED;

portMUX TYPE timerMuxl = portMUX INITIALIZER UNLOCEED;

portMUX TYPE timerMux2 = portMUX INITIALIZER UNLOCEED;

wolatile bool buttonlsPressed = false;

hw_timer t * timer0

volatile bool debounce = falase;

//PWM variablea

const int freq = 50007
con3t int ledChennel Bl 1
const int ledChannel Bl 2
const int ledChannel & 3 = 37
const int ledChannel & 4 = 47
const int ledChannel B2 5 = 5;
const int ledChannel B2 & 6;
const int resolution = 37
con3t int MAX PWM VOLTAGE
con3t int NOM PWM VOLTAGE

I
[
wu e

255;
235;

S/Initialization

f/Initialization

void TRAM ATTR U5 check() { //Ultrasonic svent
portENTER_CRITICAL ISR ({stimerMuxl):
digitalWrite (trig, LOW):
delayMicroseconds(2);
digitalWrite (trig, HIGH):
delayMicroseconds (10) ;7
digitalWrite (trig, LOW):
duration = pulseln({ech, HIGH):
lastDistancelm = distancelm;
distanceCm = duration * sound_spd/2:
portEXIT CRITICAL ISR (stimerMuxl):

void TRAM ATTR onTimel () { //speed check interrupt
portENTER CRITICAL ISE(stimerMuxl);
prevCountBl = curCountBl;
prevCountA = curCountd;
prevCountB2 = curCountB2r
curCountBl = encoderBl.getCount({);
curfCountk = encoderh.getCount({);
curCountB2 = encoderB2.getCount()i
deltaT = true;
portEXIT CRITICAL ISE({stimerMuxl);

void TRAM ATTR onTime2 () { //button debounce interrupt
portENTER CRITICAL ISR (stimerMux2):
debounce = false;
timerStop{timerd) ;
portEXIT CRITICAL ISR (stimerMuxi);

void TRARM ATTR isr() { J/ start-stop button event
buttonIaPressed = true;

void setup{) |
S/ pin setup
pinMode (LIM BTN, INFUT): // Sets up the push button
attachInterrupt (LIM BTN, isr, BISING); //3ets up the button interrupt
pinMode {trig, OUTPUT): /7 Sets the trigPin for ultrasonic
pinMods {ech, INPUT); // Sets the echoPin for ultrasonic

Wallace_event final _code

S/encoder and serial setup

Serial.b=gin(115200) ;

ES5P32Encoder: :useInternalWeakPullResistors = UP; // Enable the weak pull up resist
encoderBl.attachHalfQuad {36, 4)r; // Attache pins for use as encoder pins
encoderBl.setCount (0) ;7 // 3et starting count value after attaching
encoderfA.attachHal fQuad{21, 27):; // Attache pina for use as encoder pins

encoderh. setCount {0); // set starting count value after attaching
encoderB2.attachHal fQuad (13, 12): // Attache pina for use as encoder pins
encoderB2.setCount {(0)» /S set starting count value after attaching

[/PHH setup

ledcSetup (ledChannel Bl 1, freq, resolution);
ledc3etup (ledChannel Bl 2, freq, resolution);
ledc3etup (ledChannel & 3, freq, resclution);
ledc3etup (ledChannel & 4, freq, resclution);
ledcSetup (ledChannel B2 5, freq, resolution);
ledcSetup(ledChannel B2 &, freq, resolution):

// attach the channel to the GPIC to be controlled
ledchAttachPin (BIN1_1, ledChannel Bl 1);
ledcaAttachPin (BIN1_2, ledChannel Bl_2);
ledcattachPin (AIN 1, ledChannel & 3);
ledcictachPin (AIN 2, ledChannel & 4);
ledcittachPin (BINZ 1, lsdChannel B2 5):
ledcAttachPin (BIN2_ 2, ledChannel B2_&)r

J/ initilize timer

timerld = timerBegin(0, 80, true); // timer 0, ultrasonic check
timerAttachInterrupt (timerl, &US check(), trus);
timerRAlarmdrite(timerl, 20000, trus);:

timerl = timerBegin(l, 80, true): // timer 1, encoder sampling
timerAttachInterrupt (timerl, sonTimel, true):
timerAlarmWrite (timerl, 5000, trus=);:

timer2 = timerBegin(2, 80, true); // timer 2, button debouce
timerAttachlnterrupt ({timer2, sonlimeld, true);
timerAlarmWrite(timera, 1000000, tcruej);

/f at least enable the timer alarms
timerAlarmEnable (timerl); // enable
timerhlarmEnable (timer2); // enable

Wallace event final _code

timerStop (timer2); S/atops timer for debouce

void loopf) {
switch {atate) |

case 0 : // motor is stopped, counts are cleared so that state 1 can start from zero
encoderBl.clearCount { §;
encoderh.clearCount {)r
encoderB2.clearCount {)r

if {buttonPressEvent(}) {
state = 1;
startMotorResponse()

}

break:

caze 1 : f/ climbing state
if (deltaT) {
portENTER CRITICAL{stimerMuxl);
deltaT = false;
portEXIT CRITICAL {stimerMuxl);

US check(); //checks to see if ultrasonic sensor 1is within threshold distance

fFFinds apeed in counts per 5000 microseconds
omegaSpeedBl = curCountBl - prevCountBl;
omegaSpeedlh = curCountld - prevCountlh:
omegaSpeedB2 = curCountB2 - prevCountB2:

/fmotor control equations

B one = (KeB one * (omegaDes - omegaSpeedBl)) + (KiB one * sum upE B one);
A = (Keh * (omegaDes - omegaSpeedd)) + (Hik * sum upE A);

B two = (KeB_two * (omegaDes - omegaSpeedB2)) + (KiB _two * sum upE B two);

//ferror equations for climbing

sum upE B one = omegaDes - omegaSpeedBl;
sum upE A = omegaDes - omegaSpeedi;

sum upE B two = omegaDes - omegaSpeedBi;

fferror limiters for integral control
if (sum upE B one > 100) |

[Wallace_event final_code
J/error limiters for integral control
if (sum upE B one > 100} {
sum upE B one = 100;
}
if (sum upE & > 100} {
sum upE A = 100;
}
if (sum upE B two > 100} {
sum upE B two = 100;

//Ensure that you don't go past the maximum possible command
pwmLimi ter()

f/Ultrasonic event checker
f/drives motors if ultrasonic threshold is not pasased
if {distancelm > thresh) |
startMotorBesponse() ;
1
//fatops motors and changes state to retreat atate if ultrasonic threshold is passed
glse if (distanceCm < thresh && lastDistanceCm < thresh) |
stopMotorResponse () ;
state = 2; //Ultrasonic event service

//plots motor data
plotControlDatal() 5
]

f/button press event checker

//changes state to retreat state if button is pushed
if (buttonPressEvent()) {

state = 2; //button press event service
revMotorResponse () ;

1

break;

defanlt: // should not happen
Serial.println("5M ERROR™) ;
break;

case 2 =« J/retreat state
if ({deltaT) {

Tt FWTEFD SCDTTTOAT Frtddmorbiel b -

case 2 @ //retreat state
if (deltaT) |
portENTER CRITICAL{ztimerMuxl):
deltaT = false;
portEXIT CRITICAL{:ztimerMuxl):

//Finds speed in counts per 5000 microseconds
omegaspeedBl = curlountBl - prevCountBl;
omegaspeedd = curCountd - prevCounth;
omegasSpeedB2 = curCountB2 - previountB2;

S/motor control equations

B one = {KeB_ons * (omegaSpeedBl + omegaDes)) + (KiB_one * sum dwnE B one):
A = (E=A * ([omegaSpeedh + omegales)) + (Kik * sum dwnE A);
B two = (EeB _two * (omegaSpeedB2 + omegaDes)) + (KiB_two * sum dwnE B two);

[/ferror equations for retreating

sum dwnE B one = omegaSpeedBl + omegabes;
sum dwnE & = omegaSpeedlf + omegaDes;

sum dwnkE B two = omegaSpeedB2 + omegaDes;

J/error limiters for integral control
if (sum dwnE B one > 100} {
sum dwnE B ome = 100;
1
if (sum dwnE & > 100} {
sum dwnkE A = 100;
1
if {sum dwnE B two > 100} {
sum dwnE B two = 100;

J/Ensure that you don't go past the maximum possible command
pwmLimiter();

fidrives the motors in reverse until the count returns to Eero
J/eeturning device to start position
if {curCountBl >= 0} {
revMotorResponse () ;
}
glse if (curCountBl <= 0) {
stopMotorResponse() -
state = 07

[Wallace _event final_code & _

J/plots motor data
plotControlData() »

1

f/button event checker

J/fatops device if button is pushed

if {buttonPressEvent()) |

state = 07 f/button press event service
stopMotorResponse () ;7

}
break;

[fEvent Checkers
kool buttonPreasEvent() |
if {buttonIaPressed = true && debounce == falae) |
buttonIsPressed = false;
timerStart{timerl) ;
debounce = trus;
return true;
}
else |
return falser

f/Event Service Responses

void atopMotorBesponse() |
ledcWrite (ledChannel Bl 2, LOW);
ledcWrite (ledChannel Bl 1, LCW):
ledcWrite (ledChannel A 4, LOW);
ledcWrite (ledChannel A 3, LOW):
ledcWrite (ledChannel B2 &, LOW);
ledcWrite {ledChannel B2 5, LOW):

void startMotorBesponse() |
ledcWrite (ledChannel Bl 1, LCW):
ledcWrite (ledChannel Bl 2, B one):
ledcHrite (ledChannel A 3, LOW):
ledcWrite (ledChannel A 4, A);

Wallace event_final code &

ledcHrite (ledChannel Bl 2, B onej;
ledcWrite(ledChannel & 3, LCOW);
ledcWrite (ledChannel & 4, A);
ledcWrite (ledChannel B2 5, LOW):
ledcWrite (ledChannel B2 &, B two);

void revMotorBResponse() {
ledcHrite (ledChannel Bl 2, LCW):
ledcWrite(ledChannel Bl 1, B one);
ledcWrite (ledChannel & 4, LOW);
ledcWrite (ledChannel & 3, A);
ledcWrite (ledChannel B2 &, LOW):
ledcWrite (ledChannel B2 5, B two);

f/0ther functions
vold pwomlimiter({) |
if (B _one > MaX PWM VOLTAGE) |
B one = MAX FWM VOLTAGE;
}
if (& > MRX PWM WOLTIRAGE) |
A = MRY PWM VOLTAGE:
}
if {B_two > MRX PWM VOLTRGE) |
B _two = MAX FWM VOLTAGE;

volid plotControlData() |
Serial.println("SpeedBl, Speedl, SpeedB2, Desired S5peed, countBl, distancelm"):
Serial.print (omegaSpeedBl) ;
Serial.princ{™ ");
Serial.print (omegaSpeedA) ;
Serial.print(™ "}):
Serial.print (omegaSpeedB2) ;
serial.print(" ")
Serial.print (omegales)
Serial.print (™ "):
Serial.print (curCountB1/100);
Serial.princ{™ T):
Serial.println{diatanceCm) ;

