ME102B (Prof. Stuart)
Oniqga Urmi, Alejandro Diaz, SooMin Kang
December 12, 2021

Automated Rice Dispenser
Opportunity
In reducing the time and effort needed to perform mundane household tasks, including preparing to cook,
we thought of innovative designs. Among feasible choices including a rice cooker, fridge organizer,
automatic vegetable slicer, etc. we chose to emphasize being able to predetermine an amount of ingredient
needed and dispensing. In the case of our developed concept—the automated rice dispenser—we will be
controlling the amount of rice and dispensing it from storage.

High Level Strategy
1. The rice dispenser will stay idle on a table top with 1 ESP32 microcontroller, 2 LEDs, 3 push
buttons, 1 potentiometer, 1 ultrasonic sensor
a. Ifbutton 1 is pressed, the rice dispenser will turn on (turning led1 on)
b. Using a potentiometer, we can change the amount of rice that is dispense—choosing
between 1cup (range of 0-2048) and 2cups (range of 2048-4095)
c. Ifbutton 2 is pressed, the rice dispenser will dispense by starting/rewinding motor with
and without a delay (1 cup — assigned steps ; 2 cups — assigned steps with a delay).
d. Using an ultrasonic sensor, the distance from the sensor to the level of rice will be sensed.
If there is no rice left (reaches the distance between sensor and the bottom of the
container), the led2 will turn on, which alerts the user to refill the container.
e. Ifbutton 3 is pressed, then the led2 turns off.
2. The rice dispenser will detect whether there is sufficient rice to dispense.
The rice dispenser will dispense the desired amount of rice that the user needs.
4. Special considerations were not included due to complexity of the electrical design (coding and
integrating the multiple controls), but initially dealt with connecting the rice dispenser to a rice
cooker that will direct it to cook automatically.

W

From our initial desired functionality, we were able to achieve all of the desired functions. We included
additional buttons to make the system more clear. Also, we specified the steps of the stepper motor.

Integrated Physical Device Figure 1: Final Product at Expo

Ultrasonic sensor lives under
. ——lid, directly above container to
sense rice volume

Button 1 turning
system on/off
Green LED

signalling on/off Button 2 to dispense

Red LED signalling
error/refill needed

Button 3 to reset
after refill

Potentiometer to set
1 cup vs 2 cups

Figure 2: Actuation Mechanism

The trap door is attached to a linkage
that is turned via a stepper motor. It is
programmed to then rotate by 90
degrees for a predetermined amount of
time

Function-Critical Decisions
The main function-critical decisions revolved heavily around the dispensing mechanism and

actuation. To actuate the trap door between its dispensing and holding positions required a motor—we
decided on a stepper motor due to its stable stationary position. Stepper motors provide a holding torque
that is sufficient enough to hold the trap door closed against a full load of rice. We can also easily control
the position by commanding the number of steps that results in the door being held open at a desired
angle. A closed loop control is not needed, and we can spare the expense of an encoder.

To spec out the proper sized motor, it is important to properly define the loads that the motor
would see, then add a small factor of safety to account for manufacturing errors. The load case that would
result in failure of the assembly would be when the system is fully loaded with rice in a stationary closed
position. Although the system only dispenses 1 or 2 cups of rice, we decided that choosing the motor to
hold a 2.5 cup load would give us a large enough safety margin as well as a margin to allow for a larger
storage container in the assembly. This load is to be distributed evenly across the 5” (127mm) wide
platform. A static analysis was performed on an equivalent cantilever beam fixed at one end to replicate
the platform (beam) and motor shaft (fixed end).

Assumptions:
2.5 cups maximum holding capacity (~500g)
e 500g distributed load
e 57 (127mm) long cantilever beam
e FBD as follows:

¥y

| 1000g

A B

|
™.

Figure 3: Motor Load FBD

Force and Moment Equivalencies:

ZFy = —500 + R, [g] =0
—>RA= 500g
SM, = —500*(127/2) + M, = 0

-M, = 31750g * mm = 0.31Nm

The force calculations tell us that our motor requires 0.31Nm of torque capability and a 500g (4.9N)
radial load capacity. According to the datasheet for a NEMA 17 stepper motor, we fall just within the
torque capability and well within the max radial load of 28N. We feel comfortable choosing this motor as
the 2.5 cup load has a built in safety margin (refer to Appendix A, Figure 6).

\ W\‘; d‘\srw\u
fottmtiometer
v.\mdmwﬂz

buton@ i¢ presed/
bkon Qi pressed / St wnvbor an'nh@) 15 veleased/
fhvv\ on LEDD nwmd motoy
batton@ 1§ released/
vvmd motoy
buﬁvn@"clus:‘(/
tunn o EDQD

bk @ S Yreésed/
+wm ogp LED®

havnd'"

vn\mq)ﬂ'\nﬁ\na\”‘

buton@ i< pressed/ Lunp dispente
1 distance » Limit/ st wrtor
FRRRERR | e fum oft LEDO,

L] +avn on qao@
OO
A - fl
| 1

Figure 4: Final Circuit Diagram Figure 5: Final State Transition Diagram

Advice for Future Students

The biggest difficulty we had was to actuate the motor. While we wanted to resort with the parts within
our kit, we figured that the stepper motor would be more appropriate. We had to independently learn the
concepts and apply it. There was also a lot of time spent debugging, integrating debounce, and making a
solid code; however, coding step-by-step with the state diagram helped us finalize the code.

A. Stepper Motor Data Sheet

Appendix

HIGH TORQUE HYBRID STEPPING MOTOR SPECIFICATIONS

General specifications Electrical specifications
Step Angle (°) 1.8 Rated Voltage (V) 4
Temperature Rise (° C) 80 Max (rated current.2 phase on) | Rated Current (A) 1.2
Ambient temperature (°C) -20~+50 Resistance Per Phase ¢10%2) 3.3 (25°C)
Number of Phase 2 Inductance Per Phase 20%mH) 2.8
Insulation Resistance 100MQ , Min (500vDC)| Holding Torque (Kg.cm) 3.17
Insulation Class Class B Detent Torque (g.cm) 200
Max.radial force (N) 28 (20mm from the flange) Rotor Inertia (g.cm') 68
Max.axial force (N) 10 Weight (Kg) 0.365
Figure 6: Pololu Stepper Motor Datasheet
B. Bill of Materials
Part Functionality Quantity UOM Cost Tot. | Already Have
Plywood - 1/4" x Housing/Enclosure 2 EA $26.64
24" x 48"
Plastic Container 5 | Rice Container 2 EA $4.10
B'x7"x 11"
Plywood 1/4" x 12" | Dispense Mechanism 2 EA $3.34
x 24" (Platform + Linkage)
ESP32 Arduino Microcontroller, Power 1 EA N/A 0
Source
Ultrasonic Sensor To detect rice 1 EA N/A 0
level/amount
LED Alerts if rice container is | 2 EA N/A 0
empty
Button Press to dispense 3 EA $16.00 0
Potentiometer For desired amount to 1 EA N/A 0
dispense
Pololu Stepper To actuate dispensing 1 EA $21.95
Motor (NEMA 17) | mechanism
Pololu Stepper To drive/control stepper | 1 EA $11.95
Motor Driver motor
Rice Prototyping, 1 5-LB Bag | $6.89 0
Functionality Check

Figure 7: 3D CAD Model of Final Product

Wood Glue Adhesive for enclosure 1 $5.20
setup and mounting
container to enclosure

Handle Handle for user to open EA $3.80
and refill rice

Hinges Enclosure Opening and EA $8.56
Dispense Doors

Ya - 20 Screws Mounting handles and 25 pack $10.45
linkages

Y4 - 20 Hex Nuts Mounting Handles and 100 pack $5.56
linkages

Shaft Collar Linkage held in place EA $5.11

C. CAD Model

Figure 8: Bottom View of the Trap Door and Motor

D. Code

“#include <Arduino.hs
#include "BasicStepperDriver.h"

//Define constants ----==-----mm oo oo m e
#define BTN 15 // declare the button ED pin number
#define BTNZ 12

#define BTN3 14

#define LED_PIN1 17

#define LED_PINZ 21

#define DIR 26 //A@

#define STEP 25 //Al

#define POT 4

#define trigPin 16

#define echoPin 19

#define SOUND_SPEED @.034

#define CM_TO_INCH @.393701

#define MOTOR_STEPS 200

#define RPM 10

#define MICROSTEPS 1

BasicStepperDriver stepper(MOTOR_STEPS, DIR, STEP);

//PWM properties

const int freq = 5000;
const int ledChannel_l1 = 1;
const int ledChannel_2 = 2;

const int pwmChannel = 0;

const int resolution = 8;

int MAX_PWM_VOLTAGE = 255;

float distanceCm;

//Setup variables -----—-—- - - o

volatile bool buttonIsPressed = false;

volatile bool button2IsPressed = false;

volatile bool button3IsPressed = false;

volatile bool interruptCounter = false; // check timer interrupt
volatile bool EnoughRice = false;

//Timer Variables

int totallnterrupts; // counts the number of triggering of the alarm
hw_timer_t * timer = NULL;

portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;

int state = 0;

int distance;

long duration;

float refillduration;
float refilldistance = 1;

//Initialization ------=------mmmmmm
void IRAM_ATTR onTime() {
portENTER_CRITICAL_ISR(&timerMux);
interruptCounter = true; // the function to be called when timer interrupt is triggered
portEXIT_CRITICAL_ISR(&timerMux);
timerStop(timer);

}
void IRAM_ATTR isr() {
buttonIsPressed = true;

}
void IRAM_ATTR isr2() {
button2IsPressed = true;

}
void IRAM_ATTR isr3Q) {
button3IsPressed = true;

void TimerInterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz clocked at 80MHz, we will have 80,000,000 Tics.
timer = timerBegin(@, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 = 1,000,000 tics / sec
timerAttachInterrupt(timer, &onTime, true); // sets which function do you want to call when the interrupt is triggered
timerAlarmWrite(timer, 1000000, true); // sets how many tics will you count to trigger the interrupt
timerAlarmEnable(timer); // Enables timer

void setup() {
// put your setup code here, to run once:
distance = analogRead(POT);
pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
pinModeCechoPin, INPUT); // Sets the echoPin as an Input

pinModeCPOT, INPUT);

pinMode(LED_PIN1, OUTPUT);

pinMode(LED_PINZ, OUTPUT);

pinMode(BTN3, INPUT);

pinMode(BTN2, INPUT);

pinMode(BTN, INPUT); // configures the specified pin to behave either as an input or an output
attachInterrupt(BTN3, isr3, RISING);

attachInterrupt(BTNZ, isr2, RISING);

attachInterrupt(BTN, isr, RISING); // set the "BTN" pin as the interrupt pin; call function named "isr" when the interrupt is triggered; "Rising" means triggering interrupt when the pin goes from LOW
Serial.begin(115200);

TimerInterruptInit();

timerStop(timer); // ADDED

digitalWrite(LED_PIN1, LOW);

ledcSetup(ledChannel_1, freq, resolution);
ledcSetup(ledChannel_2, freq, resolution);

// attach the channel to the GPIO to be controlled
//ledcAttachPin(BIN1, ledChannel_1);

// ledcAttachPin(BIN2, ledChannel_2);

stepper.begin(RPM, MICROSTEPS);

//Main 100p --======m==m oo
void loop() {

switch (state) {
case @: //case @ checks if Button 1 is pressed. If it is pressed, then the green LED light turns on and state switches to 1. Prints System is now ON, turn Dial to dispense 1 or 2 aa
if (CheckforButtonPress(Q)) {
ledl_on();
buttonIsPressed = false;
state = 1;
Serial.println("System On, turn dial to dispense 1 or 2 cups!");
Serial.println("Press Button 2 to Dispense Rice");
}
break;
case 1: // case 1 checks if button 1 (turn off button) is clicked. If yes, then turn off system and return to case @. If not, continues to next check.
distance = analogRead(POT);
Serial.printlnCrefilldistance);
//Serial.print("Distance (inch): ");
//Serial.println(refilldistance);
if (CheckforButtonPress() == true) {
ledl_offQ);
buttonIsPressed = false;
state = 0;

if (NeedmoreRice() == true) { // This if checks if rice needs refill. If needs refill, state switches to 4. If rice does not need refill, continue to next check.
ledl_of f();
led2_onQ);
state = 4;

if (CheckforButtonPress2() == true) { // This if checks if button 2 (dispense button) is clicked. If yes, then check distance. If not, stay in state 1.
//DOES THERE NEED TO BE A STATE ASSIGNMENT HERE?, WHAT STATE are we in, if none of these are true?

if (CheckForDistancePot1() == true) { //If this is true, move to state 2 and dispense 1 cup.

state = 2;

button2IsPressed = true;

if (CheckforButtonPress2() == true) { // This if checks if button 2 (dispense button) is clicked. If yes, then check distance. If not, stay in state 1.
//DOES THERE NEED TO BE A STATE ASSIGNMENT HERE?, WHAT STATE are we in, if none of these are true?

if (CheckForDistancePotl() == true) { //If this is true, move to state 2 and dispense 1 cup.

state = 2;

button2IsPressed = true;

}
else if (CheckForDistancePot2() == true) { //If this is true, move to state 3 and dispense 1 cup

state = 3;
button2IsPressed = true;
}
break;

1

break;

case 2: //dispenses 1 cup

if(CheckforButtonPress2() == true) {
Serial.println("1l cup of rice now dispensing");
startMotorResponsel();
rewindMotorResponsel();
button2IsPressed = false;
state = 1;

}

break;

case 3: //dispenses 2 cups
if (CheckForDistancePot2() == true) {
1f(CheckforButtonPress2() == true) {
Serial.println("2 cups of rice now dispensing");
startMotorResponsez();
rewindMotorResponsez();
button2IsPressed = false;
state = 1;
}
}

break;

case 4: //if rice needs refill, then ask user to click button 3 to dismiss and return to main menu

Serial.println("Refill needed, press Button 3 to dismiss error and return to main menu");

if (CheckforButtonPress3() == true) { //"If Button 3 is clicked, turn off Alert light and return to state 1"
led2_off(Q);

ledl_onQ);
state = 1;
button3IsPressed = false;
}
}
}

void RefillQ) {
digitalWriteCtrigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(5);
digitalWrite(trigPin, LOW);

refillduration = pulseIn(echoPin, HIGH);
distanceCm = refillduration * SOUND_SPEED/2;
refilldistance = distanceCm * CM_TO_INCH;
delay(1000);

}
// EVENT CHECKERS
bool NeedmoreRice() {
Refill(Q);
if (refilldistance > 6.0) { //Change this Value when Sensor is mounted
Serial.println("Need to refill");
return true;

}
else {
return false;
}
}

bool CheckForDistancePotl() {
Serial.println(distance);
if (distance < 2048) {
return true;
}

else {
return false;
}

}
bool CheckForDistancePot2() {
int distance = analogRead(POT);
Serial.println(distance);
if (distance > 2048) {
Serial.println("2 cups dispensing");
return true;
1

else {
return false;
}

}

boolean CheckforButtonPress(){
if (buttonIsPressed == true && timerStarted(timer) == false) {
return true;
}
else {
return false;

}
}
boolean CheckforButtonPress2(){

if (button2IsPressed == true && timerStarted(timer) == false) {
return true;

else {
return false;

¥

boolean CheckforButtonPress3(){
if (button3IsPressed == true && timerStarted(timer) == false) {
return true;
1
else {
return false;

1
}
void ButtonResponse(){
Serial.println("Pressed!™);
buttonIsPressed = false;

ledi_on(Q);
1

boolean CheckforTimeDone() {
if (interruptCounter) {
return true;
}
else {
return false;
}
}
void TimeDoneResponse() {
if (interruptCounter) {
portENTER_CRITICAL(&timerMux);
interruptCounter = false;
portEXIT_CRITICAL(&timerMux);
timerStop(timer);
}
}

// MOTOR and LED Response

void ledl_on(){
digitalWrite(LED_PINL, HIGH);

}

void ledl_off(){
digitalWrite(LED_PIN1, LOWD;
}

void led2_on(){
digitalWrite(LED_PIN2, HIGH);
}

void led2_off(){
digitalWrite(LED_PINZ, LOW);
}

void startMotorResponsel() {
stepper.rotate(-80);
}

void rewindMotorResponsel() {
stepper.rotate(80);

void startMotorResponse2() {
stepper.rotate(-89);
delay(2000);

void rewindMotorResponse2() {
stepper.rotate(80);
delay(2000);

}

