
Kai Chorazewicz
Michael McNabb

102B Group 7
P4 LightDiscs Report

Summary
We chose to address the opportunity of creating a compact personal mobility platform to

enable easier urban transportation for students, and achieved this with the LightDisc system.
Our high-level strategy was to have two discs controlled by a control box and remote, and drive
on various surfaces. We intended for the LightDisc system to have a 15 mph wheel speed, and
we achieved a 17.2 mph wheel speed (calculations in subsequent sections).

However, we pivoted to a 3D-printed polyurethane tire over a pressurized tube tire to
enable custom sizing and rigidity of the tire. Also, we pivoted to only one motor in the “leader”
LightDisc, which would pull the rider forward, while the “follower” is not motorized. We did this
for controls and electronics simplicity, but also safety and stability, as having a pushing disc or
both discs motorized could cause the rider to fall much more. Additionally, while we intended to
calculate velocity by integrating an IMU, this proved to be extremely difficult due to sensor drift
creating unacceptable error in velocity, and we instead used an open-loop controls system with
the rider’s remote “closing” the loop.

Device Overview

Device Decisions
For actuation of the LightDisc, as mentioned before, we chose to motorize one of the

discs for controls simplicity and improved safety. We chose a brushless DC motor due to their
high power output and high efficiency with large loads, which would be necessary to transport a
person. The wheel speed measured with a laser tachometer, at no load with full remote throttle
(which was scaled to around ⅔ of the actual throttle of the motor for safety), was 550 rpm. With
a 10.5 inch diameter wheel, this means: =𝑣

𝑑𝑖𝑠𝑐
= 550 𝑟𝑜𝑡

𝑚𝑖𝑛 * 60 𝑚𝑖𝑛
1 ℎ𝑟 * π * 10.5 𝑖𝑛

1 𝑟𝑜𝑡 * 1 𝑚𝑖𝑙𝑒
63360 𝑖𝑛

17.2 mph. Meanwhile, the ideal max wheel speed given battery voltage of 14.4 V and Kv of 420,
was:

= 18.8𝑣
𝑖𝑑𝑒𝑎𝑙

= 420
𝑟𝑝𝑚

𝑔𝑒𝑎𝑟

𝑉 *
1 𝑟𝑜𝑡 (𝑃𝐷

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑔𝑒𝑎𝑟
)

6.7 𝑟𝑜𝑡(𝑃𝐷
𝑚𝑜𝑡𝑜𝑟 𝑔𝑒𝑎𝑟

) * 14. 4 𝑉 * 60 𝑚𝑖𝑛
1 ℎ𝑟 * π * 10.5 𝑖𝑛

1 𝑟𝑜𝑡 * 1 𝑚𝑖𝑙𝑒
63360 𝑖𝑛 * 2

3

mph. So although the target speed of 15 mph was reached, there was some discrepancy due to
losses in the bearings and transmission, but the 420 Kv motor we chose was sufficient for our
speed and power requirements.

For the bearings loads, we assumed 4 bearings to be in contact at any time, due to
deflections within the races. This meant that with a max load of 100kg, the max load a bearing

would see: 245.3 N. Given a 608ZZ bearing is rated for 1334.47N𝐹
𝑏𝑒𝑎𝑟𝑖𝑛𝑔

= 100 𝑘𝑔 * 9.81 𝑚/𝑠2

4 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠 =

(300 lbf) as per McMaster-Carr, the safety factor here is 5.44. Considering that there are many
more than 4 bearings per disc resolving forces at any given time in both axial and radial
directions, this safety factor is likely even greater.

Mechanically, the device is assembled with threaded rods clamping the axial thrust
bearings of the assembly against the internal bearing surface, guaranteeing solid contact even
at extreme turning angles. These threaded rods function as both locating features and structural
members, to reduce costs while still meeting the tolerances required within this assembly.

Software & Hardware
Circuit diagram

2

State transition diagram

Reflections
In hindsight, what worked well for us was pivoting to one motorized disc, as this was

plenty to move a person. Also, the TPU 3D-printed tires instead of tubes were a good decision,
as they allowed tunability of flexure and size, instead of having a size constraint of a purchased
tire. The aluminum parts also worked great as they were extremely strong and light, similarly to
the generative design for the foot supports, which allowed for 3D-printed foot supports that were
optimized for the footplate. Also, designating tasks and subsystems to work on based on each
team members’ strengths worked very well, and allowed us to fabricate and prototype the final
design in less than a month.

What we could have done better is using a better system for mounting feet to the plate,
with something like straps or velcro, to ensure greater stability. Also, a better coupler between
the BLDC and the spur gear could have been used, such as a spring pin instead of the set
screws we used. Additionally, we should have avoided using captive nuts, and instead used
threaded inserts, which are much more convenient and easy to install. Also, the mild steel used
for the internal gear made the design fairly hefty and not very portable, so we could have used
aluminum instead. We had chosen steel to minimize noise and wear from the steel bearings, but
this turned out to be overkill and aluminum would have been sufficient.

3

APPENDIX
Bill of Materials
Note: Purchase Links omitted for formatting reasons. Full BOM located at
https://docs.google.com/spreadsheets/d/1YPpNyvbBt36CzO6ezv6KbZ6A3B11mRnaP4VYTzj7
Mlg/edit?usp=sharing

Item Name Description SKU Quantity Vendor

Shoulder Bolts M6 thread 8mm OD x 20mm lg. Shoulder
Screws 92981A203

20 McMaster

BLDC Motor 400KV, 1500W D5065 Brushless DC
Motor -

1 Amazon

80A ESC 80A Electronic Speed Controller - 1 Amazon

Aluminum Plate
1/4" Used for making all frame components -

1 Jacobs Hall Material Store

Shoulder Bolts
M6 thread 8mm OD x 15mm lg. Sholder

Screws 92981A752 16
McMaster

608ZZ Bearings 22mm OD 8mm ID Skateboard Bearings - 36 Amazon

M5 Assembly
Allthreads

M5 x 170mm to be cut into 10x 85mm for
each disc -

20 Amazon

Motor Mounting
Bolts M4 x 15mm SHCS Bolts -

4 On-hand

M6 Locknuts M6 lock nuts 90576A115 36 McMaster

M5 Jam Nuts M5 Jam nuts 90695A037 20 McMaster

M3x55mm Bolts
M3 x 55mm bolts, button head cap screw

to distribute forces 92095A120

48 McMaster

M3 Locknuts M3 Nylock nuts - 36 Amazon

M3 x 25mm Bolts
M3 socket-head cap screw bolts for

mounting support bearings 90128A205
40 McMaster

M5 Locknuts M5 Nylock nuts 90576A104 36 McMaster

Steel Plate 1/8" 24" x 24" x 1/8" Mild Steel Plate - 1 Jacobs Hall Material Store

Axial Bearing
Blocks

Bearing blocks for axial shoulder bolts +
bearings, 3D printed (Tough 2000) -

20 3D-printed

Belleville Washers
Washers for 608ZZ bearings, 3D printed

(Tough 2000) - 20

3D-printed

Shaft Coupler Hex Stock motor shaft coupler - 1

On-hand

Internal Spur Gear 20 tooth Hex stock spur gear, 1" PD - 1 On-hand

Tire Tread 3D-printed TPU tire tread, 10.5" OD - 6 3D-printed

Set Screws #4-40 Set Screws - 2 On-hand

4

https://docs.google.com/spreadsheets/d/1YPpNyvbBt36CzO6ezv6KbZ6A3B11mRnaP4VYTzj7Mlg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YPpNyvbBt36CzO6ezv6KbZ6A3B11mRnaP4VYTzj7Mlg/edit?usp=sharing

CAD

Inner Race Assembly CAD.

Outer Race Assembly.

5

Assembly CAD and cross sectional view. Generative design models not shown due to modeling
complexity.

Generative Design models used for front and back brackets to support foot plate to inner race,
respectively.

6

LightDisc Software
#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

#include <utility/imumaths.h>

#include <ESP32Servo.h>

#define PWM_PIN 32

#define POT 34 //A2

#define EN_T 15

#define LED 14

#define BNO055_SAMPLERATE_DELAY_MS (100)

Adafruit_BNO055 bno = Adafruit_BNO055(-1, 0x28);

Servo M1;

int motorSpeed = 0;

bool failsafeTriggered = 0;

bool remoteEn = 0;

unsigned long prevMillis = 0;

enum STATE{

IDL = 0,

COAST = 1,

FWD = 2,

REV = 3,

BRAKE = 4,

FAILSAFE = 5

};

STATE state = IDL;

void checkOrientation(){ //check IMU orientation to see whether rider fell off

imu::Vector<3> euler = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

Serial.println("y:"+String(euler.y())+",z:"+String(euler.z()));

if(abs(euler.z())<40 || abs(euler.y())>40){ //orientation off z or y indicates rider fell off

state = FAILSAFE;

Serial.println("Failsafe enabled!");

}

else if(failsafeTriggered && abs(euler.z())>40 && abs(euler.y())<40){

state = IDL;

Serial.println("Failsafe deactivated!");

failsafeTriggered = 0;

}

}

void IRAM_ATTR isr() { // remote button interrupt

static unsigned long last_interrupt_millis = 0;

if(millis() - last_interrupt_millis > 500){

last_interrupt_millis = millis();

remoteEn = !remoteEn;

Serial.print("Button pressed, ");

if(remoteEn){

Serial.println("enabling!");

7

digitalWrite(LED,HIGH);

state = COAST;

}

else{

Serial.println("disabling!");

digitalWrite(LED,LOW);

state = IDL;

}

}

}

void setup() {

digitalWrite(LED,LOW);

M1.attach(PWM_PIN);

pinMode(LED,OUTPUT);

pinMode(POT, INPUT);

pinMode(EN_T, INPUT_PULLUP);

attachInterrupt(EN_T, isr, FALLING); //remote button pulls to ground when pressed

Serial.begin(115200);

if(!bno.begin()){

Serial.print("No BNO055 detected!");

while(1){

Serial.print(".");

delay(500);

}

}

bno.setExtCrystalUse(true);

}

void loop(){

float val = analogRead(POT); //check analog value of potentiometer

switch(state){

case COAST:

if(val < 1710) state = FWD;

else if(val > 1760) state = REV;

else{

motorSpeed = 90;

M1.write(motorSpeed);

}

break;

case FWD:

if(val > 1760) state = BRAKE;

else motorSpeed = -1*(int)(pow(val-1720,1) / ((pow(4095-1720,1)/50))) + 90; //throttle fwd

mapping

Serial.println("FWD,servo:"+String(motorSpeed));

M1.write(motorSpeed);

if(motorSpeed = 90) state = COAST;

break;

case REV:

if(val < 1710) state = BRAKE;

else motorSpeed = (int)(pow(1720-val,1) / (pow(1720,1)/20)) + 90; //throttle reverse

8

mapping

Serial.println("REV,servo:"+String(motorSpeed));

M1.write(motorSpeed);

if(motorSpeed = 90) state = COAST;

break;

case BRAKE:

M1.write(motorSpeed);

delay(500);

break;

case FAILSAFE:

if(!failsafeTriggered){ //code-blocking for-loops to ensure lightdisc slows down

digitalWrite(LED,LOW);

if(motorSpeed > 90){

for(int i = motorSpeed; i >= 90; i--){

M1.write(i);

delay(25);

}

}else{

for(int i = motorSpeed; i <= 90; i++){

M1.write(i);

delay(25);

}

}

failsafeTriggered = 1;

}

else{ //simple flashing indicator on remote once disc has slowed down

digitalWrite(LED,HIGH);

delay(500);

digitalWrite(LED,LOW);

delay(500);

}

break;

default:

motorSpeed = 90; //central PWM value for "coast" is 90 on ESC

M1.write(motorSpeed);

}

if(millis() - prevMillis > BNO055_SAMPLERATE_DELAY_MS){ //non-blocking sampling of BNO055 IMU

checkOrientation();

prevMillis = millis();

}

}

9

