Marco Abbiate | Joseph Benedetti | Calvin Stephens 12.11.22
Mechatronics Final Report: WalkerAssist

Opportunity:

In our current version of the walker, our opportunity is very similar to the original opportunity we outlined in
P2 in terms of functionality. We initially viewed this device as something that would seamlessly be integrated
into any home. The device would be like a piece of furniture in the home as opposed to a device that is not a
part of its natural environment. Ideally our product would have customizable skins / outer finishes to match
the desired aesthetics of a home. The opportunity we identified and worked on to solve this semester with
WialkerAssist is to increase eldetly and disabled people's independence. Our device will allow for elderly
people to place objects onto the platform on the walker and have those objects be lowered to the ground in a
controlled manner and also be deposited onto the ground via the sweepers on the platform. The same would
be true in reverse as well. The platform, via the sweepers, would be able to pull (or sweep) objects onto the
platform and then raise them to a height for the user to have to bend minimally to pick up the object. This
device would allow eldetly and disabled people to be able to do more things around the house instead of
relying on the aid of another person to help them.

Comparison:

In our initial ideation, we envisioned that this device would be integrated into the home, modular, and also
have the platform and sweepers being able to move desired objects up, down, off and on. We will address
each of these in detail. In regard to the integration into the users home, we saw the device being able to be
used as a table and have the aesthetic features to be considered a piece of furniture. Our final prototype did
not have any sort of aesthetic appeal due to our main focus on the functionality being correct. The aesthetic
appeal could be made from laser cut wood that could be painted to hide the electrical components and
mechanical mechanisms present in the device. For the modular aspect, we decided that to ensure proper
functionality, the modular aspect would not be accounted for in our final design. To make our device modular
would be difficult with our current design since we used bolts to attach our device to the walker. If we used
some sort of secure clip design, our product could potentially be able to be easily taken on and off of the
walker. For the base functionality of movement, we were able to hit our deliverable target entirely. We had a
working platform that can lift and lower objects and also working sweepers that could push objects on and
off of the platform. Our platform did not reach entirely to the top of the platform due to our design however
in the future their design could be modified for more upwards movement ability.



Physical Device Diagram:

Breadboard wi

buttons (digital $ensg
potentiometer for theé
sweepers (analog Ségsor)







e

e ——

_-rf ‘e
\ : 3 "H-—\__k_d

for the sweepers

' Gear transmission

Function-Critical Decisions:

The first function critical decision was the choice to use a worm gear transmission for our dc motor lift
mechanism. Our standard motor would not be able to drive the main shaft on its own while simultaneously
driving the platform, so we chose this transmission due to its high torque and lack of backdrivability.

Lifting Motor

Assume the shaft has radius r = 3mm.

What force do we need to lift?

The platform is =~ 5lbs and a payload of 10 lbs — 15 lbs to lift.
Gear transmission ratio between the worm and worm gear is 60:1.
Assume factor of safety of 2.

Tin ¥ 60 = F.O.5. * Ty fting
= 2% 3mm * 15lbs
= 90mm - lbs

6

Tin = me - lbs = 0.00668N - m



The next function critical design decision was the gear transmission for the analog input-controlled platform
paddles. We wanted to use a potentiometer as our analog input for the steppers to drive the paddles, but we
needed to make sure the stepper could provide adequate torque and mount propetly. To accomplish this, we
designed a gear transmission that would mount to the platform in two locations, the bottom and then a

“ceiling” that was created as a result of our bending procedure.

Sweeping Motor

Assume Force acts at /2

Pull in item 10 lbs in weight

Assume the arm does all the pulling

There are two gear stages, both with a 4:1 gear ratio
Assume 1 is 6 in.

Fo‘uercomefriction = W x*x N S 1% N = 10lbs

4 4
Tzn*I*IzTXF:l/2*10:5l

= 30lb-in
1 445N  1m
Tin = 76 *30* T * 39374, — 022N m
r— —
"/

20 J

B ]
//44___‘//// 1

Another critical design decision was our bearing sizing, The calculations are detailed below, but basically we

wanted to make sure we propetly sized our bearings for the amount of load that would be on them.



Diagram for reference

pad

4
[Vt ey
Jox
Fax ﬁ l ;/!/‘1%

Arrume No axial oadsy

Newa 17
STin_SI8m ya Torgue
-

Bearing Calculations
Fplatform = 15lbs = 67N
Fi2 =T73.75N

ZFz =0=Fa, + Fp, + F12
ZFy ZOZFAy +FBy _Fplatform

> Mp =0=(-2d2) x (Fa & + Fa,§) + (—d2) x (—Fpiatform¥) + (=p% — 1)) x (F124)
— —QdFAmﬂ + ZdFAyﬂAL‘ - delatformj +rZ
@2dFAy i dela,tfo-rm =0

FAy e platform/z
= FBy - platform/2

(9)— 2dF4, =0
Fa, =0
- FBm =0

The next function critical design decision was the use of the v-slot rails and carriage. While our pulley could
drive the platform up as the result of our digital input buttons, we had no way to lock the x and y-axes. With
this implementation, the platform would be mounted to these carriages, locking it strictly in the z-axis. There



were no real calculations involved in this decision other than the measurements involved to align the rails with
the assembly above and the platform itself.

The next function-critical design decision was the dc motor mount. We needed a way to mount the motor to
the walker frame itself, so we elected to bend sheet metal and create several locating features to mount and
align the motor with the worm gear transmission. The critical step in this process was switching to a flexible
shaft coupling for the motor, allowing for some slop in the bending process. There were no major

calculations in this process other than those that went into the hole positioning, as much of the alignment and
mounting was made to be adjustable so we could position it by hand on our walker.

Circuit Diagram and State Transition Diagram:

deppul | Steppu

‘ ‘ ) | poi-anhomﬂ&
up ‘.

Sicpoee ||| [Rppen] ] =2

— Lonive | || Lovvee ] || " down

ONDAU veaby max
2-tovel g /4tof nom

W%%MLA

lnifiakizahim P i
i) o
(Motouy ot platonin on me
ok toe topy = 4 ey




Reflection:

WalkerAssist was a momentous challenge from the inception of the project, and at this point in its progress
we can be fully confident that it was a successful prototype. Though challenges arose from the complexity
due to augmenting an existing device that was not intended to be augmented, our team was able to come up
with adequate solutions that will serve as a backbone for all of our future work on this project. The
electronics also serve as a strong base for future iterations, allowing for even more accessibility within the

home for WalkerAssist’s usets.



CAD Images

Isometric



Worm Gear Transmission

Side view of DC motor housing



Platform Stepper Transmission

Bill of Materials:
https://docs.google.com/spreadsheets/d/1E1 9X gCPWGOskxiDehvkyvoKR7dglrluxeeteutl 8 /editPusp=

sharing


https://docs.google.com/spreadsheets/d/1E1pJgQ9XqCPWG0skxiDehvkyoKR7dqIrluxeeteut18/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1E1pJgQ9XqCPWG0skxiDehvkyoKR7dqIrluxeeteut18/edit?usp=sharing

Code:

() () WalkerAssist | Arduino 1.8.19

WalkerAssist

#include <Arduino.h>
#include <ESP32Encoder.h>
#include <AccelStepper.h>
#define DC_DIR 26

#define DC_PWM 25

#define UP_BTN 4

#define DOWN_BTN 5

#define POT 12

#define CLK 27 // CLK ENCODER
#define DT 33 // DT ENCODER
#define STEPZ 14

#define DIRZ 22

#define LIMIT 23

ESP32Encoder encoder;

// Setup variables

int state = 0;

volatile bool debounceT = false;

hw_timer_t * timer@ = NULL;

portMUX_TYPE timerMux@ = portMUX_INITIALIZER_UNLOCKED;
volatile bool downButtonIsPressed = false;

volatile bool upButtonIsPressed = false;

volatile bool limitSwitchHit = false;

// Define the stepper motor and the pins that is connected to
const int DIR = 32;

const int STEP = 15;

#define motorInterfaceType 1

AccelStepper stepper(motorInterfaceType, STEP, DIR);
AccelStepper stepper2(motorInterfaceType, STEP2, DIR2);

// setting PWM properties ---------------oommmmmoo—
const int freq = 5000;

PO DUy ISR B | a.

213 Adafruit ESP32 Feather, 80MHz, 921600, None, Default on /dev/cu.usbserial-01D967B81



WalkerAssist

// setting PWM properties -
const int freq = 5000,

const int ledChannel_1 = 1;
const int resolution = 8;
int MAX_PWM_VOLTAGE = 250;

int motor_PWM;

int potValue = 0;

int prevPotValue = 0;

int stepValue = 0;

int potResolution = 2048;

const int maxSweepingPosition = -215;
const int minSweepingPosition = 80;
const int maxZ_Travel = 420;

//200 / (10 * PI) * 1000; //Counts per rev * (1 rev / 10pi mm) * (1000mm travel) --> counts
int long encoderZ_Position = 0;

int sweepingPosition = 0;

//ISRs

void IRAM_ATTR onTime(Q{
portENTER_CRITICAL_ISR(&timerMux@);
debounceT = true;
portEXIT_CRITICAL_ISR(&timerMux@);
timerStop(timer@);
}

void IRAM_ATTR upButtonISRQ{
portENTER_CRITICAL_ISR(&timerMux@);
upButtonIsPressed = true;
timerStart(timer@);
portEXIT_CRITICAL_ISR(&timerMux@);
}

void IRAM_ATTR downButtonISRQ){
portENTER_CRITICAL_ISR(&timerMux@);

AnanaDi bk AT ~Nanm s ad danisas

WalkerAssist

void IRAM_ATTR downButtonISR(Q{
portENTER_CRITICAL_ISR(&timerMux@);
downButtonIsPressed = true;
timerStart(timer@);
portEXIT_CRITICAL_ISR(&timerMux@);
}

void IRAM_ATTR 1imitISRQO{
portENTER_CRITICAL_ISR(&timerMux@);
limitSwitchHit = true;
timerStart(timer@);
portEXIT_CRITICAL_ISR(&timerMux@);
}

void setup(Q {
// PUSH BUTTONS
attachInterrupt(UP_BTN, upButtonISR, RISING);
attachInterrupt(DOWN_BTN, downButtonISR, RISING);

//STEPPERS
stepper.setMaxSpeed(1000) ;
stepper.setAcceleration(60);
stepper.setSpeed(200);

stepper2.setMaxSpeed(1000);
stepper2.setAcceleration(60);
stepper2.setSpeed(200);
stepper2.moveTo(200);

//LIMIT SWITCH
pinMode(LIMIT, INPUT);
attachInterrupt(LIMIT, 1imitISR, RISING);

// ENCODER
encoder.attachHalfQuad ( DT, CLK );
o

Ammadan ALl Ak



WalkerAssist

// ENCODER

encoder.attachHalfQuad ( DT, CLK );
encoder.setCount ( @ );
Serial.begin ( 115200 );

//POTENTIOMETER
pinMode(POT, INPUT);
prevPotValue = analogRead(POT);

// configure LED PWM functionalitites
ledcSetup(ledChannel_1, freq, resolution);

// attach the channel to the GPIO to be controlled
ledcAttachPin(DC_PWM, ledChannel_1);
pinMode(DC_DIR, OUTPUT);

// Idling State
state = 0;
stopPulleyQ);

//Initialize Timer
TimerInterruptInitQ;
}

void loopQ) {
delay(500);

Serial.println("State: ");
Serial.println(state);

switch (state) {
case @: // IDLING
if (checkForDownButtonPress()) {

drivePulleyDownQ);
state = 1;
.
WalkerAssist
state = 1;
break;

case 1: // LOWERING
//ENCODER
encoderZ_Position = encoder.getCount() / 2;
Serial.println("Encoder value: ");
Serial.println(encoderZ_Position);
if (abs(encoderZ_Position) >= maxZ_Travel) {

stopPulleyQ);
state = 2;
break;

case 2: // FULLY LOWERED
if (checkForUpButtonPress()) {
drivePulleyUpQ;
state = 3;

//POTENTIOMETER
potValue = analogRead(POT);
if (checkForMoveSweepers()) {
moveSweepers();
state = 4;
}

break;

case 3: //LIFTING
//ENCODER
encoderZ_Position = encoder.getCount() / 2;
Serial.println("Encoder value: ");
Serial.println(encoderZ_Position);\

SE Ll ammndanT PasiiiaaN . IONF




WalkerAssist

case 3: //LIFTING
//ENCODER
encoderZ_Position = encoder.getCount() / 2;
Serial.println("Encoder value: ");
Serial.println(encoderZ_Position);\
if (abs(encoderZ_Position) <= 20){
Serial.print("Encoder at zero position");

stopPulleyQ);
state = 5;
}

break;

case 4: // MOVE SWEEPERS
potValue = analogRead(POT);
if (checkForMoveSweepers()) {
moveSweepers();
state = 4;

}

if (checkForUpButtonPress()) {
drivePulleyUpQ;
setSweepersToZero();
state = 3;

}

break;

case 5: // HOMING
//encoder.setCount(@);
limitSwitchHit = false;
state = 0;
break;
}
}

WalkerAssist

// Event Checkers

bool checkForUpButtonPress(){
if (upButtonIsPressed && debounceT){
debounceTimerReset();
return true;
}
else {
return false;

}

bool checkForDownButtonPress(){
if (downButtonIsPressed &% debounceT){
debounceTimerReset();
return true;

else {
return false;
}
}

bool checkForMoveSweepers(){
if (abs(potValue - prevPotValue) > potResolution) {
return true;

else {
return false;
}
}

//Event Services R
void drivePulleyUp() {

vk kAT A Naammad P D




WalkerAssist

//Event Services --- -

void drivePulleyUp() {
upButtonIsPressed = false;
Serial.println("Drive pulley up");
ledcWrite(ledChannel_1, MAX_PWM_VOLTAGE);
digitalWrite(DC_DIR, LOW);
motor_PWM = MAX_PWM_VOLTAGE;

}

void drivePulleyDown() {
downButtonIsPressed = false;
Serial.println("Drive pulley down");
ledcWrite(ledChannel_1, MAX_PWM_VOLTAGE);
digitalWrite(DC_DIR, HIGH);
motor_PWM = MAX_PWM_VOLTAGE;

}

void moveSweepers() {
Serial.println("Move Sweepers");
if ((potValue - prevPotValue) > potResolution){
Serial.println("Pushing off the platform");
stepper.moveTo(maxSweepingPosition);
stepper2.moveTo(-maxSweepingPosition);

}
if ((potValue - prevPotValue) < -potResolution){
Serial.println("Sweeping onto the platform");
stepper.moveTo(minSweepingPosition);
stepper2.moveTo(-minSweepingPosition);
while (stepper.distanceToGo() '= @ & stepper2.distanceToGo(Q) != @) {
stepper.runQ;
stepper2.runQ);
}
}

WalkerAssist
Seoppr e 5
}

prevPotValue = potValue;
}

void setSweepersToZero() {

Serial.println("Setting sweepers to stowed position");

stepper.moveTo(0);

stepper2.moveTo(@);

while (stepper.distanceToGo() !'= @ && stepper2.distanceToGo() != @) {
stepper.runQ;
stepper2.runQ;

}

}

void stopPulley({
Serial.println("Stopping pulley");
limitSwitchHit = false;
ledcWrite(ledChannel_1, LOW);
digitalWrite(DC_DIR, LOW);

void TimerInterruptInit() { //The timer simply counts the number of Tic generated by the quartz. With a quartz
timer@ = timerBegin(@, 80, true); // divides the frequency by the prescaler: 80,000,000 / 80 = 1,000,000 tics ,
timerAttachInterrupt(timer@, &onTime, true); // sets which function do you want to call when the interrupt i
timerAlarmWrite(timer@, 50000, true); // sets how many tics will you count to trigger the interrupt
timerAlarmEnable(timer@); // Enables timer
timerStop(timer@); //Pause timer to initialize debounce

}

void debounceTimerReset() {
portENTER_CRITICAL(&timerMux@);
debounceT = false;
portEXIT_CRITICAL(&timerMux@);
timerStop(timer®@);




