
 Ball Balancing Board
 2022 Fall Mechatronics Design Capstone Project

 Casey Wilson, Ziven Posner, Tristan Schwab, John Gilbreth

 Opportunity:
 Walking and navigating dense streets can be a
 strenuous adventure. Electric mobility devices
 such as scooters and electric skateboards have
 become a popular option to cut down
 commuters’ carbon footprint. However, electric
 scooters and skateboards, such as Onewheels,
 are limited to motion along one axis making it
 difficult to change direction in crowded areas
 with lots of foot traffic which increases the risks
 of collision with other pedestrians. Hence, our
 goal is to build Ball Board, a portable personal
 transportation device which enables multi-axis
 mobility for maneuvering through crowds.

 Starting Objective: Balance a Board
 on Top of a Ball
 Our strategy for implementation was to design a
 board around a size 5 soccer ball driven by three
 independent 12V DC motors with
 double-layered omni-wheels similar to that
 found in [1] and [3]. We planned to achieve
 full-balancing using a PID logic controller with
 user inputs that could adjust the direction based
 on the weight distribution on the board. For our
 final product, we didn’t achieve perfectly stable
 balancing or implement a user-input for
 changing direction. However, with trial and error
 of adjusting gains to tune our controller, we
 were still able to achieve stabilization and
 motion in the 2D cardinal plane. We were
 fortunate to have started development in the
 early part of the semester, providing us ample
 time to optimize three independent designs
 before the final project. The first designs were
 two low fidelity prototypes using a laser cut
 board with a soccer ball in the middle. We made
 use of stepper motors to design the original
 motor towers, and progressively switched to
 higher torque brushed DC motors in future
 design versions. From our first prototypes, we

 learned that extensive design and testing would
 be required to scale up to a fully rideable device,
 so we limited our scope by not designing for
 rideablity.

 Physical Hardware
 Developing the transmission system was one of
 the more difficult and technically challenging
 aspects of our final project. After realizing that a
 direct drive transmission would lead to a bulky
 final product, we shifted focus to a twisted
 (crossed) belt drive that permitted the motors to
 rest within the confines of the board. Full-self
 balancing was another core function of our
 project. Previous ball-balancing robots like those
 found in [1] and [2] used the calculated
 moments of inertia for all components to design
 a feedback controller. The final hardware proved
 to be a scale and functional prototype of a fully
 rideable product, and the next step would be
 replacing components with higher strength
 materials such as aluminum, installing batteries
 on board, using higher torque motors, and
 potentially switching to a more sturdy balls such
 as a bowling ball to improve surface contact.

 While the design of the driving transmission and
 controller were the largest hurdles in the project,
 great attention was also dedicated to design
 aesthetics: the Ball Board needed to convey a
 sense of durability and confidence. Elegant side
 contours from the 3D printed PLA skirt make
 the device appear simple and easy to use while
 the transparent acrylic bottom showcases the
 entire assembly and simplicity of the twisted belt
 drive. It’s important to note that while the belts
 handle bending and torsional twisting well, they
 cannot handle left and right flexion. The belt
 guides were designed with this in mind so that
 there is minimal torsional resistance from the
 belt transmission system.

 Design Theory:
 The main calculations for design were explicitly
 for the transmission system. We started with
 calculating belt tension:

 𝐹
 1

= 𝐹
 𝑖

+ 𝑇 / 𝑑 (1)

 𝐹
 2

= 𝐹
 𝑖

− 𝑇 / 𝑑 (2)

 To find required pretension, we used Eq. 2
 To find 𝐹

 𝑖
= 0 + 3 . 7 𝑁𝑚 /0 . 016 𝑚 = 231 𝑁 .

 max tension to spec out hardware, we used Eq. 1
 . The 𝐹

 1
= 231 𝑁 + 3 . 7 𝑁𝑚 / . 016 𝑚 = 463 𝑁

 2GT timing belt used is 6mm wide and has a
 strength of 86 N per 1mm width, so the total

 strength is 516N which is greater than the
 maximum belt tension.

 Next, we calculated loads to spec out bearings:

Σ 𝑀
 𝑎

= 0 (3)

Σ 𝐹
 𝑦

= 0 (4)

 Using Eq. 3 we found the load on bearing (b)
 𝐹

 𝑏
= (33 𝑁 *. 017 𝑚 + 463 𝑁 *. 0508) / . 042 𝑚 ,

 so . Then using Eq. 4, we found the 𝐹
 𝑏

= 573 𝑁

 load on bearing (a)
 . The 𝐹

 𝑎
= 463 𝑁 + 33 𝑁 − 573 𝑁 =− 78 𝑁

 bearings used have a static load rating of 677N
 which is greater than the max expected load.

 Using Eq. 4 we found the load on the idler
 pulleys, , 𝐹

 𝑖𝑥
= (1 + 𝑐𝑜𝑠 (45)) 𝐹

 𝑝𝑟𝑒
= 394 𝑁

 , 𝐹
 𝑖𝑦

= 𝑠𝑖𝑛 (45) 𝐹
 𝑝𝑟𝑒

= 163 𝑁

 . 𝐹
 𝑖

= (394 𝑁) 2 + (163 𝑁) 2 = 427 𝑁

 This is less than the idler pulleys’ rated load of
 550N. The max radial load on the motor is the
 same as the max belt tension, 463N. The motors
 used have a max radial load rating of 600N
 which is greater than the max expected radial
 load.

 Inertial Measurement Unit:
 The IMU that was selected for this project was
 the MPU-6050 because it has a gyroscope and
 accelerometer allowing for 6DOF. The IMU is
 mounted parallel with the board allowing the
 accelerometer and gyroscope analog readings to
 map linearly to the relative position of the board.
 By averaging the two sensor reading and using a
 complementary filter, the angle estimation is
 able to be more accurate and free from
 gyroscopic drift. A complimentary filter was
 implemented to increase robustness of the
 controller from plant disturbances which
 improved the overall plant performance. Eq. 5
 and Eq. 6 are used for the complimentary filter.

θ
 𝑒𝑠𝑡

= 𝑡𝑎 𝑛 − 1 (𝑎
 𝑥
 / 𝑎

 𝑦
) (5)

θ
 𝑖

= 0 . 98 (θ
 𝑖 − 1

+ ω 𝑑𝑡) + 0 . 02 θ
 𝑒𝑠𝑡

 (6)

 State and Circuit Diagram:

 Reflection:
 The Ball-board project was a demonstration of
 an electric mobility device that our team built in
 one semester by setting our sights early with
 high standards, and maintaining consistent
 progress throughout the semester. One of the
 greatest decisions which impacted our progress
 was when we decided to switch from the A4990
 motor drivers to the LN298, after struggling
 with off-nominal encoder readings. In the initial
 design, we were very concerned with the contact
 surface between the omni-wheels and the soccer
 ball; however, after pumping up the soccer ball
 and fine-tuning the controller, we were pleased
 with the minimal amount of slipping at the
 surfaces. Another area of concern was
 tensioning the belt drives, which would lead to
 skipping and disturbance in the plant. To get
 around this, we used quick action clamps to pull
 the motor towers 2 and 3 together.

 What worked well for our team was setting high
 goals and falling just short of expectations. What
 resulted was a project that we are deeply proud
 of with a great design aesthetic, unique power
 transmission system, wonderful UI, and fairly
 complex controller code. Some areas of
 improvement could be implementing a more
 robust controller, replacing components with
 higher strength materials such as aluminum,
 installing batteries on board, using higher torque
 motors, and potentially switching to more sturdy
 balls such as a bowling ball or carbon fiber
 wrapped ball that may improve surface contact if
 this project were to ever be sold commercially.

 Appendix
 [1] Closed Loop Control of Unstable Omni
 Directional Assisting System, V. Kadam et al.
 [2] Modeling and Control of a Ballbot, P. Fankhouser
 and C. Gwerder
 [3] 3D Modeling of a Robot Balancing on a Ball, E.
 Pellegrini, K. J Diepold, R. Dessert, H. Panzer

 Technical Information - Appendix

 BOM:

 CAD:

 Isometric view of the board

 Cross Section of the centered tower transmission
 design

 Inside View of offset tower transmission design

 Forced air cooling diagram, necessary to cool
 the dual motor drivers during use.

 More Photos:

 State display panel featuring Idle, Balance, and
 Demo. Demo is indicated by having the Idle and

 Balance lights both on.

 Omni-wheel tower

 Arduino Code:

 // This code is a frame for the 3 states that
 baller board will have
 #include <Adafruit_MPU6050.h>
 #include <ESP32Encoder.h>
 #include <Adafruit_Sensor.h>
 #include <Wire.h>
 #include <math.h>
 #include <Arduino.h>
 #include <Bounce2.h>
 Adafruit_MPU6050 mpu;
 Bounce2::Button button = Bounce2::Button();
 // declares the button library as an object

 #define BTN 15 // declare the button ED pin
 number
 #define LED_PIN 13 // declare the builtin
 LED pin number
 #define LED_mode1 32 // declares the mode
 light
 #define LED_mode2 14 // declares the mode
 light
 //#define LED_mode3 32 // declares the mode
 light

 // MOTOR 1
 #define BIN_1 25
 #define BIN_2 26

 // MOTOR 2
 #define BIN_3 27 //13
 #define BIN_4 33 //12

 // MOTOR 3
 #define BIN_5 13 //27
 #define BIN_6 12 //33

 //Polar Function Setup
 float quickest = 10 ;
 float t = 0 ;
 float r = 10 ;

 volatile bool buttonIsPressed = false;
 int state = 1 ; //initial state that is desired at
 start of code

 // setting PWM properties

 const int freq = 25000 ;
 const int ledChannel_1 = 1 ;
 const int ledChannel_2 = 2 ;
 const int ledChannel_3 = 3 ;
 const int ledChannel_4 = 4 ;
 const int ledChannel_5 = 5 ;
 const int ledChannel_6 = 6 ;
 const int resolution = 8 ;
 const int MAX_PWM_VOLTAGE = 255 ;
 const int NOM_PWM_VOLTAGE = 150 ;

 int omegaMax = 361 ;

 //Setup PID variables ----------------------------
 float speed1Des = 0 ;
 float speed2Des = 0 ;
 float speed3Des = 0 ;
 int D1 = 0 ; // Duty cycle for the motor
 int D2 = 0 ;
 int D3 = 0 ;
 float Kp = 3 ; // TUNE THESE VALUES TO
 CHANGE CONTROLLER PERFORMANCE
 float Ki = 7 ;
 float rScaler = 3 ;
 const int deadBand = 20 ;
 float errSum1 = 0 ;
 float errSum2 = 0 ;
 float errSum3 = 0 ;
 float err1 = 0 ;
 float err2 = 0 ;
 float err3 = 0 ;
 float scaler = 100 ;
 int IMax = 0 ;
 const int errClamp = 175 ;

 //Setup Speed Measurement variables

 int speed1 = 0 ;
 int speed2 = 0 ;
 int speed3 = 0 ;
 volatile int count1 = 0 ; // encoder count
 volatile int count2 = 0 ;
 volatile int count3 = 0 ;

 bool demo = false;

 //Setup interrupt variables

 ESP32Encoder encoder1;
 ESP32Encoder encoder2;
 ESP32Encoder encoder3;
 volatile bool interruptCounter = false; //
 check timer interrupt 1
 volatile bool deltaT = false; // check timer
 interrupt 2
 int totalInterrupts = 0 ; // counts the number
 of triggering of the alarm
 hw_timer_t * timer0 = NULL;
 hw_timer_t * timer1 = NULL;
 portMUX_TYPE timerMux0 =
 portMUX_INITIALIZER_UNLOCKED;
 portMUX_TYPE timerMux1 =
 portMUX_INITIALIZER_UNLOCKED;

 //Declare Variables for IMU
 float accel_xA, accel_yA, accel_zA;
 float x_angle, y_angle;
 float squareX, squareY;
 float gyro_angle_x, gyro_angle_y,
 gyro_angle_z;
 float currentTime, previousTime, dt;
 float accX, accY, accZ;
 float pitch, roll, yaw;
 float gyroX, gyroY, gyroZ;

 //Initialization ------------------------------------
 void IRAM_ATTR isr() { // the function to be
 called when interrupt is triggered
 buttonIsPressed = button.pressed();

 }

 void IRAM_ATTR onTime0() {

 portENTER_CRITICAL_ISR(&timerMux0);
 interruptCounter = true; // the function to be

 called when timer interrupt is triggered
 portEXIT_CRITICAL_ISR(&timerMux0);

 }

 void IRAM_ATTR onTime1() {

 portENTER_CRITICAL_ISR(&timerMux1);
 count1 = encoder1.getCount();
 encoder1.clearCount ();
 count2 = encoder2.getCount();
 encoder2.clearCount ();

 count3 = encoder3.getCount();
 encoder3.clearCount ();
 deltaT = true; // the function to be called

 when timer interrupt is triggered
 portEXIT_CRITICAL_ISR(&timerMux1);

 }

 void setup () {
 //button setup
 button. attach (BTN, INPUT);
 button.interval(50);
 button.setPressedState(LOW);
 //allocation of pins to be used for LEDs and

 Modes
 pinMode (LED_PIN, OUTPUT);
 pinMode (LED_mode1, OUTPUT);
 pinMode (LED_mode2, OUTPUT);
 //pinMode(LED_mode3, OUTPUT);

 // Initialize to idle mode
 digitalWrite (LED_mode1, HIGH);
 digitalWrite (LED_mode2, LOW);

 // configure LED PWM functionalities
 ledcSetup(ledChannel_1, freq, resolution);
 ledcSetup(ledChannel_2, freq, resolution);
 ledcSetup(ledChannel_3, freq, resolution);
 ledcSetup(ledChannel_4, freq, resolution);
 ledcSetup(ledChannel_5, freq, resolution);
 ledcSetup(ledChannel_6, freq, resolution);

 // attach the channel to the GPIO to be
 controlled
 ledcAttachPin(BIN_1, ledChannel_1);
 ledcAttachPin(BIN_2, ledChannel_2);
 ledcAttachPin(BIN_3, ledChannel_3);
 ledcAttachPin(BIN_4, ledChannel_4);
 ledcAttachPin(BIN_5, ledChannel_5);
 ledcAttachPin(BIN_6, ledChannel_6);

 //attach button interrupt
 attachInterrupt (BTN, isr, CHANGE);

 Serial . begin (115200);
 Serial . println ("Board Mode 1

 (Initialize/DoNothing)");
 Serial . println ("___________");

 Wire . begin (23 , 22); // declares the SDA and

 SCL pins. change to desired based of wiring.
 while (! Serial)
 delay (10); // will pause Zero, Leonardo, etc

 until serial console opens

 Serial . println ("Mpu-6050 Sensor Test!");

 // Try to initialize!
 if (!mpu. begin ()) {
 Serial . println ("Failed to find MPU6050

 Check Connections GPIO 21 and 22");
 while (1) {
 delay (10);

 }
 }
 Serial . println ("MPU6050 Found!");

 mpu.setAccelerometerRange(MPU6050_RAN
 GE_8_G);

 mpu.setGyroRange(MPU6050_RANGE_500
 _DEG);

 mpu.setFilterBandwidth(MPU6050_BAND_9
 4_HZ);

 ESP32Encoder::useInternalWeakPullResistors
 = UP; // Enable the weak pull up resistors
 encoder1.attachHalfQuad(36 , 39); // Attache

 pins for use as encoder pins M1(36,39)
 M2(4,16) M3(17,21)
 // encoder2.attachHalfQuad(16, 4);
 // encoder3.attachHalfQuad(21, 17);
 encoder3.attachHalfQuad(4 , 16);
 encoder2.attachHalfQuad(21 , 17);
 encoder1.setCount(0); // set starting count

 value after attaching
 encoder2.setCount(0);
 encoder3.setCount(0);

 // initialize timer
 timer0 = timerBegin(0 , 80 , true); // timer 0,

 MWDT clock period = 12.5 ns *
 TIMGn_Tx_WDT_CLK_PRESCALE -> 12.5
 ns * 80 -> 1000 ns = 1 us, countUp
 timerAttachInterrupt(timer0, &onTime0,

 true); // edge (not level) triggered
 timerAlarmWrite(timer0, 5000000 , true); //

 5000000 * 1 us = 5 s, autoreload true

 timer1 = timerBegin(1 , 80 , true); // timer 1,
 MWDT clock period = 12.5 ns *
 TIMGn_Tx_WDT_CLK_PRESCALE -> 12.5
 ns * 80 -> 1000 ns = 1 us, countUp
 timerAttachInterrupt(timer1, &onTime1,

 true); // edge (not level) triggered
 timerAlarmWrite(timer1, 10000 , true); //

 10000 * 1 us = 10 ms, autoreload true

 // at least enable the timer alarms
 timerAlarmEnable(timer0); // enable
 timerAlarmEnable(timer1); // enable

 Serial . println ("Board Mode 1
 (Initialize/DoNothing)");
 delay (100);

 }

 void loop () {
 button.update(); // updates the status of the

 button
 if (button.pressed() == true) {
 button_case();

 }
 //board_mode(); // code in this section will

 determine what the board does

 // FUNCTIONS USING THE
 ACCELEROMETER
 pitch = read_pitch();
 roll = read_roll();
 polarizeFall(pitch, roll);

 // FUNCTION FOR THE MOTORS
 polarize(t, r);

 switch (state) {
 // case 1 will be a intialize/do nothing state
 case 1 :
 D1 = 0 ;
 D2 = 0 ;
 D3 = 0 ;
 driveAllMotors();
 break ;

 //case 2 will be a balance or auto move state
 case 2 :
 if (deltaT) {
 portENTER_CRITICAL(&timerMux1);

 deltaT = false;
 portEXIT_CRITICAL(&timerMux1);

 speed1 = count1; // += for position
 speed2 = count2; // = for velocity
 speed3 = count3;

 }

 pidMove();
 driveAllMotors();
 break ;

 //case3 3 will be the demo mode
 case 3 :
 if (deltaT) {
 portENTER_CRITICAL(&timerMux1);
 deltaT = false;
 portEXIT_CRITICAL(&timerMux1);

 speed1 += count1; // += for position
 speed2 += count2; // = for velocity
 speed3 += count3;

 }

 pidMove();
 driveAllMotors();
 break ;

 }

 plotMotor3();
 }

 void button_case() {
 switch (state) {
 // case 1 will be a intializa/do nothing state
 case 1 :
 if (button.pressed() == true) {
 Serial . println ("Balancing");
 digitalWrite (LED_mode2, HIGH);
 digitalWrite (LED_mode1, LOW);
 Kp = 3 ;
 Ki = 7 ;
 rScaler = 5 ;
 demo = false;
 state = 2 ;

 }
 break ;

 // Case 2 will be a balance or auto move
 state

 case 2 :
 if (button.pressed() == true) {
 Serial . println ("Demo");
 digitalWrite (LED_mode1, HIGH);
 digitalWrite (LED_mode2, HIGH);
 Kp = 2 ;
 Ki = .25 ;
 rScaler = 170 ;
 demo = true;
 state = 3 ;

 }
 break ;

 // Case 3 will be a demo mode
 case 3 :
 if (button.pressed() == true) {
 Serial . println ("Idle");
 digitalWrite (LED_mode1, HIGH);
 digitalWrite (LED_mode2, LOW);
 state = 1 ;

 }
 break ;

 }
 }

 //function for reading the pitch
 float read_pitch()
 { previousTime = currentTime;
 dt = (currentTime - previousTime) / 1000 ;
 sensors_event_t a, g, temp;
 mpu.getEvent(&a, &g, &temp);
 accX = a.acceleration.x;
 accY = a.acceleration.y;
 accZ = a.acceleration.z;
 gyroX = g.gyro.x - 1.2 ;
 //gyroY = g.gyro.y + 1.3;

 //Calculte the pitch roll and yaw of
 acceleramator and gyroscope
 squareX = sqrt (pow (accX, 2) + pow (accZ,

 2));
 if (squareX == 0) {
 squareX = 0.1 ;

 }
 accel_xA = (atan(accY / squareX) * 180 /

 PI) -0.48 ;
 gyro_angle_x = pitch + gyroX * dt;

 //Complimentary Filter for Results Gathered
 pitch = 0.96 * gyro_angle_x + 0.04 *

 accel_xA; // if needed the numeric values can
 be changed in order to change the wieght of
 the filter values 0>x>1
 return pitch;

 }

 float read_roll()
 {
 previousTime = currentTime;
 dt = (currentTime - previousTime) / 1000 ;
 sensors_event_t a, g, temp;
 mpu.getEvent(&a, &g, &temp);
 accX = a.acceleration.x;
 accY = a.acceleration.y;
 accZ = a.acceleration.z;
 gyroY = g.gyro.y + 1.3 ;

 //Calculate the pitch roll and yaw of
 accelerometer and gyroscope
 squareY = sqrt (pow (accY, 2) + pow (accZ,

 2));
 if (squareY == 0) {
 squareY = 0.1 ;

 }
 accel_yA = (atan(accX / squareY) * 180 /

 PI) -2.43 ;
 gyro_angle_y = roll + gyroY * dt;

 //Complimentary Filter for Results Gathered
 roll = (0.96 * gyro_angle_y + 0.04 *

 accel_yA);

 return roll;
 }

 float read_yaw() {
 previousTime = currentTime;
 currentTime = millis ();
 dt = (currentTime - previousTime) / 1000 ;
 sensors_event_t a, g, temp;
 mpu.getEvent(&a, &g, &temp);
 gyroZ = g.gyro.z * 180 + 1.285 ;

 //Calculte the pitch roll and yaw of
 acceleramator and gyroscope
 yaw = yaw + gyroZ * dt;

 return yaw;
 }

 void driveAllMotors() {
 // Move the DC motor forward at maximum

 speed
 if (D1 >= 0) {
 ledcWrite(ledChannel_1, LOW);
 ledcWrite(ledChannel_2, D1);

 } else if (D1 < 0) {
 ledcWrite(ledChannel_1, -D1);
 ledcWrite(ledChannel_2, LOW);

 } else {
 ledcWrite(ledChannel_1, LOW);
 ledcWrite(ledChannel_2, LOW);

 }

 if (D2 >= 0) {
 ledcWrite(ledChannel_3, LOW);
 ledcWrite(ledChannel_4, D2);

 } else if (D2 < 0) {
 ledcWrite(ledChannel_3, -D2);
 ledcWrite(ledChannel_4, LOW);

 } else {
 ledcWrite(ledChannel_3, LOW);
 ledcWrite(ledChannel_4, LOW);

 }

 if (D3 >= 0) {
 ledcWrite(ledChannel_5, LOW);
 ledcWrite(ledChannel_6, D3);

 } else if (D3 < 0) {
 ledcWrite(ledChannel_5, -D3);
 ledcWrite(ledChannel_6, LOW);

 } else {
 ledcWrite(ledChannel_5, LOW);
 ledcWrite(ledChannel_6, LOW);

 }
 }

 void pidMove() {
 err1 = speed1Des - speed1;
 errSum1 += err1;

 err2 = speed2Des - speed2;
 errSum2 += err2;

 err3 = speed3Des - speed3;
 errSum3 += err3;

 if (errSum1 > errClamp) {
 errSum1 = errClamp;

 } else if (errSum1 < -errClamp) {
 errSum1 = -errClamp;

 }

 if (errSum2 > errClamp) {
 errSum2 = errClamp;

 } else if (errSum2 < -errClamp) {
 errSum2 = -errClamp;

 }

 if (errSum3 > errClamp) {
 errSum3 = errClamp;

 } else if (errSum3 < -errClamp) {
 errSum3 = -errClamp;

 }

 D1 = Kp * err1 + errSum1 * Ki;
 D2 = Kp * err2 + errSum2 * Ki;
 D3 = Kp * err3 + errSum3 * Ki;

 if (D1 > MAX_PWM_VOLTAGE) {
 D1 = MAX_PWM_VOLTAGE;

 }
 else if (D1 < -MAX_PWM_VOLTAGE) {
 D1 = -MAX_PWM_VOLTAGE;

 }

 if (D2 > MAX_PWM_VOLTAGE) {
 D2 = MAX_PWM_VOLTAGE;

 }
 else if (D2 < -MAX_PWM_VOLTAGE) {
 D2 = -MAX_PWM_VOLTAGE;

 }

 if (D3 > MAX_PWM_VOLTAGE) {
 D3 = MAX_PWM_VOLTAGE;

 }
 else if (D3 < -MAX_PWM_VOLTAGE) {
 D3 = -MAX_PWM_VOLTAGE;

 }

 }

 void polarize(float &t, float &r) {
 quickest = r * rScaler ; // 2 best so far?
 if (!demo){
 quickest = pow (quickest/ 30 + 6.5 , 3)/ 20 ;

 }
 speed1Des = quickest * sin (t * (PI / 180)) /

 scaler;

 speed2Des = quickest * cos ((t - 30) * (PI /
 180)) / scaler; // Originally (-)
 speed3Des = -quickest * cos ((t + 30) * (PI /

 180)) / scaler; // Originally (+)
 }

 void polarizeFall(float & pitch, float & roll) {
 t = atan(pitch / roll) * 57.32 ; // 180/3.14 =

 57.32
 if (pitch > 0 && roll > 0) {
 t = t;

 } else if (pitch > 0 && roll < 0) {
 t = t + 180 ;

 } else if (pitch < 0 && roll < 0) {
 t = t + 180 ;

 } else if (pitch < 0 && roll > 0) {
 t = t + 360 ;

 } else {
 t = t;

 }

 t = t - 180 ;
 if (t < 0) {
 t = t + 360 ;

 }

 r = abs (sqrt (pitch * pitch + roll * roll) * 1);
 r = r * 10 ;

 if (r < deadBand) {
 r = 0 ;

 }
 }

 void plotMotor3() {
 Serial . println ("Quickest, speed, PWM");
 //Serial.print(speed2Des);
 Serial . print (quickest);
 Serial . print (" ");
 Serial . print (speed2);
 Serial . print (" ");
 Serial . println (D2);

 }

 void plot_data(){
 Serial . print ("Roll:");
 Serial . print (roll, 2);
 Serial . print ("Pitch:");
 Serial . print (pitch, 2);

 }

