
ME102B Final Project Report: Monkeybot

Project Opportunity
For our final project for ME102 Fall 2022, we wanted to create a robotic monkey that could climb the

monkey bars. We chose a robot that can swing on monkey bars by mimicking the pendulum-type swing that
primates employ to advance on tree branches. Based on our weighted matrix and group discussions, we agreed
this project would be the best intersection between enthusiasm and feasibility, since the brachiating movement
we are designing provides a fun challenge while being easily scalable. Non-flat terrain and above-air projects
particularly stood out to us, and we found an opportunity to implement biomimicry with a swinging monkeybot.

Figure 1. Arm movement of the monkeybot going across the monkey bars.

High-Level Strategy
Our monkeybot utilizes electromagnets as hands1 that attach and detach from steel-plated monkey bars

when current is turned off. DC motors and servo motors are combined to support the required arm movements
to swing. The robot begins in a set position, with its right arm forward and left arm backwards on adjacent bars.
Once initialized, the left electromagnets turn off and detach from the bar. The left arm’s servo motor, located in
the shoulder joint of the robot, shifts slightly back to create space for its arcing motion and prevent the arm from
hitting the bar. When a set time, tSwing, has passed, and the left encoder position reaches sufficiently far back,
the right DC motor wrist joint shifts forward and allows the left to finally reach the next bar. This cycle is
repeated until the monkey bars are traversed, recognized by the software through a bar count.

1 Gears were originally tested as the form of gripper for the monkeybot. However, this method proved to be too difficult
and further complicated the simulation calculations necessary. We decided to pivot to electromagnets instead.

Figure 2. State Diagram of the Ideal Swinging Monkeybot

Simulations and encoder readings were used to plan the arm movement from one state to another. In a
high level overview of our initial desired functionality and the achieved one, we were unable to mount the
monkey strong enough to swing across the bars with our 2 electromagnets on each hand. However, our
monkeybot demonstrates each subsystem successfully working and a solid transmission setup with the motors.

Manual and Actuation
We used a combination of materials and fabrication techniques in order to build the monkeybot’s arms

and body. The main body of the robot was laser cut with ¼” plywood, and it housed all the electronics and
batteries. 3D-printed housing was
designed to hold the 2
electromagnets of varying heights
flush with each other on each of
the monkey’s hands. One of the
pulleys controlling wrist
movement was rigidly attached to
the side of this 3D-printed piece,
and a shaft connected it to the rest
of the monkey arm. Steel (¼”) and
aluminum plates (1/32”) were cut in
Jacobs Hall’s Metal Shop with the
Fablight Machine to create the
monkey bar and additional support
around the arms, respectively. The
arms were laser cut with ¼” wood
and assembled with the
aforementioned aluminum plates
on each side to mitigate deflection. Figure 3. Outlined Assembled Robot

Each arm utilized a DC motor-driven pulley to control wrist angle for the electromagnets. Hence, the
arm was manufactured with slots to properly tension the timing belt. Smooth bearings installed external to the
belt provided additional tension and helped prevent sagging. High torque servo motors were mounted to the
shoulder joint to control arm position and stabilize the body.

Function Critical Calculations
I. First, we calculated the required gripper torque. The monkeybot will hang on a single arm in the most

extreme situation. Approximating the robot as a point mass, hanging from a bar with a ¾” diameter
(0.019 m), we find an equilibrium state and solve for the single-arm grip strength.

A. → →τ
𝑔𝑟𝑖𝑝𝑝𝑒𝑟

= 𝐹
𝑔𝑟𝑖𝑝𝑝𝑒𝑟

· 𝑑
𝑏𝑎𝑟

= 𝑚𝑔𝑙𝑠𝑖𝑛θ 𝐹
𝑔𝑟𝑖𝑝𝑝𝑒𝑟

= µ
𝑆
𝐹

𝑁
= 𝑚𝑔𝑙𝑠𝑖𝑛θ/𝑑

𝑏𝑎𝑟
𝐹

𝑁
= 𝑚𝑔𝑙𝑠𝑖𝑛θ/µ

𝑆
𝑑

𝑏𝑎𝑟

B. → FN≅ 40.76 N𝐹
𝑁

= (0. 75𝑘𝑔)(9. 81𝑚/𝑠2)(0. 2𝑚)(𝑠𝑖𝑛30𝑑𝑒𝑔)/(0. 95)(0. 019𝑚)

II. Then, we calculate the required torque of the motor at the base by considering the swing period of the
system, Tsys. Within Tsys/2 seconds, the arm should be able to sweep through 360 - 30 - 30 = 300° to

swing to the next bar. We approximate the arm as a simple pendulum driven by the body (point torque),
so Tsys/2 = π .𝑙/𝑔

A. Equation of motion is . Since point mass, →𝑚𝑔𝑙𝑠𝑖𝑛θ + τ
𝑚𝑜𝑡𝑜𝑟

 = 𝐼
𝑧𝑧

θ̈ 𝐼
𝑧𝑧

= 𝑚𝑙2 𝑚𝑔𝑙𝑠𝑖𝑛θ + τ
𝑚𝑜𝑡𝑜𝑟

 = 𝑚𝑙2θ̈

. Using a linear approximation, . The solution is of the form forτ
𝑚𝑜𝑡𝑜𝑟

(𝑡) ≈ 𝑚𝑙2θ ¨ − 𝑚𝑔𝑙θ 𝑎𝑐𝑜𝑠(ω𝑡 + ϕ)

constant torque.
B. A function that accomplishes the interpolation is: Taking the derivative, we getθ(𝑡) = 3π

4 (1 − 𝑐𝑜𝑠(π
𝑇𝑠𝑦𝑠 𝑡).

and .θ̇ = (3π2

4𝑇𝑠𝑦𝑠) 𝑠𝑖𝑛(π
𝑇𝑠𝑦𝑠 𝑡) θ̈ = (3π3

4𝑇𝑠𝑦𝑠2) 𝑐𝑜𝑠(π
𝑇𝑠𝑦𝑠 𝑡)

C. Plugging in, we get .τ
𝑚𝑜𝑡𝑜𝑟

(𝑡) = 𝑚𝑙2(3π3

4𝑇𝑠𝑦𝑠2) 𝑐𝑜𝑠(π
𝑇𝑠𝑦𝑠 𝑡) − 𝑚𝑔𝑙 3π

4 (1 − 𝑐𝑜𝑠(π
𝑇𝑠𝑦𝑠 𝑡)⎡⎣ ⎤⎦

D. Plotting this with m = 0.25 kg (arm mass) and l = 0.2 m, with a total revolution of (degrees), we find∆θ
→ τmotorMAX≅ 0.577 N·m. We would not require another gearbox.τ

𝑚𝑎𝑥
= (2.598

270𝑑𝑒𝑔)∆θ

III. Now, we approximate the motor shaft and bearing loads. The highest velocity encountered will be at the
bottom of the pendulum rotation.

A. For one half of an oscillation, . Using the average angular velocity, we compute aθ̇
𝑎𝑣𝑔

≈ 2(π/3)
𝑇𝑠𝑦𝑠 = 2. 33 𝑟𝑎𝑑/𝑠

centripetal force, .𝐹
𝑐𝑒𝑛𝑡𝑟

= 𝑚𝑣2

𝑙 = 𝑚𝑙2θ̇
2

𝑙 = 𝑚𝑙θ̇
2

B. With and ,𝑚
𝑟𝑜𝑏𝑜𝑡

= 0. 75𝑘𝑔 𝑙 = 0. 2𝑚 𝐹
𝑐𝑒𝑛𝑡𝑟

= (0. 75𝑘𝑔)(0. 2𝑚)(2. 33 𝑟𝑎𝑑/𝑠 = 0. 814 𝑁

C. 𝐹
𝑠ℎ𝑎𝑓𝑡

= 𝐹
𝑐𝑒𝑛𝑡𝑟

+ 𝑚𝑔 = 8. 17 𝑁 𝑡𝑜𝑡𝑎𝑙!

D. On the gearbox free body diagram, and∑ 𝐹
𝑧
: 𝐹

𝑠ℎ𝑎𝑓𝑡
+ 𝐹

𝑏𝑒𝑎𝑟𝑖𝑛𝑔1
+ 𝐹

𝑏𝑒𝑎𝑟𝑖𝑛𝑔2
= 0

. For our design, , so solving for bearing forces we get Fbearing2 = Fshaft =∑ 𝑀
𝑏𝑒𝑎𝑟𝑖𝑛𝑔1

: 𝐹
𝑠ℎ𝑎𝑓𝑡

𝑙
1
 = 𝐹

𝑏𝑒𝑎𝑟𝑖𝑛𝑔2
𝑙

2
 𝑙

1
= 𝑙

2

8.17 N and Fbearing1 = -2Fshaft = -16.34 N. These are both within the allowed force on the shaft and bearings.
Circuit Diagram

Reflection
Consistent communication between group members was key throughout this project in not only creating

a cohesive end product, but also in fostering an environment of inclusivity, mutual respect, and ultimately,
greater productivity. We held weekly meetings from the beginning of the semester right up until the showcase to
set goals and check in with each other, which worked really well for us. In retrospect, we believe it would have
been helpful to manufacture and assemble all components sooner, so that more time could be spent purely
debugging and troubleshooting. The controls and simulations for our robot’s brachiating movement proved to
be more complex than we anticipated, and we realized a bit too late that our electromagnets were not strong
enough to handle the full swinging motion.

Bill of Materials

communication.ino (main Arduino INO file)
#include "Electromagnet.h"

#include "Motors.h"

#include "StateMachine.h"

/*

* This file currently contains unit tests for the arduino libraries written.

* Note: default constructors are currently not working, do not use them.

*/

//create electromagnet objects for DEBUGGING ONLY (Comment out when using

state machine)

Electromagnet emagL(17);

Electromagnet emagR(21);

//create a motors object for DEBUGGING ONLY (Comment out when using state

machine)

Motors motors(33, 27, 13, 12, 15, 32, 34, 39, 26, 25);

int numBars = 2;

//Create a state machine object

StateMachine stateMachine(33, 27, 13, 12, 15, 32, 34, 39, 26, 25, 17, 21,

numBars);

void setup() {

//Begin a serial monitor

Serial.begin(115200);

Serial.println("Starting");

}

void loop() {

//update the state machine state

stateMachine.updateState();

//drive the motors to their desired position

stateMachine.motors.driveDes();

}

/*

* Unit test cases - to be used for debugging ONLY when the state machine has

not been initalized.

* Place in the main loop() to use.

* emagTests() -> test case for the electromagnet units on both arms

* hangTest() -> writes both electromagnets high for a hanging test

*/

void detachTest() {

//test detaching and arm moving back sequence

//turn L electromagnet off

emagL.switchOff();

//move the left arm back and the left DC motor to flop back position

motors.setDesPos(20, 41, 534, 0);

//drive the motors

motors.driveDes();

}

void servoTests() {

//run the servo to a desired angle, DC motors to 0.

int desAngle = 41;

motors.setDesPos(desAngle, desAngle, 300, -300);

motors.driveDes();

Serial.println(motors.getAngleMotorLeft());

Serial.println(motors.getAngleMotorRight());

delay(15);

}

void dcTests() {

//digitalWrite(13, HIGH);

//digitalWrite(12, LOW);

motors.setDesPos(60, 60, 300, 300);

motors.driveDCR(300);

motors.driveDCL(300);

printEncoder();

}

void encoderTest() {

//print the encoder readings to the serial monitor

Serial.println(motors.getAngleMotorLeft());

Serial.println(motors.getAngleMotorRight());

}

void emagTests() {

//Run the electromagnet tests

emagL.emagTest();

emagR.emagTest();

}

void hangTest() {

//move the servos to a default 41 deg position

motors.setDesPos(60, 60, 0, 0);

motors.driveDes();

//turn on the electromagnets for a simple hang

emagR.switchOn();

emagL.switchOn();

printEncoder();

}

void printEncoder() {

Serial.print("enc left: ");

Serial.print(motors.getAngleMotorLeft());

Serial.println();

Serial.print("enc right: ");

Serial.print(motors.getAngleMotorRight());

Serial.println();

}

void encoder41Deg() {

//Start in the 41, 41 position with both wrists vertical. this is the zero

position.

//(41, 41) is left arm forwards, left arm backwards.

motors.setDesPos(41, 41, 0, 0);

motors.driveDes();

}

void encoderCalibrate() {

//to be called AFTER setup()

//move to the 76, 76 position. (76, 76) is left arm forwards, right arm

backwards.

motors.setDesPos(76, 76, 0, 0);

motors.driveDes();

//Now, move the wrists to vertical in this config and print out the encoder

reading.

//This gives desired state.

printEncoder();

}

Electromagnet.cpp
#include "Electromagnet.h"

/*

This file contains an implementation of the Electromagnet class

*/

/*

Initialize an electromagnet object

Inputs:

s_pin (int) : pin number of signal pin used to switch the electromagnet on

and off

*/

Electromagnet::Electromagnet() {

//default constructor - calls the other constructor

Electromagnet(13);

}

Electromagnet::Electromagnet(int s_pin) {

sPin = s_pin; //store the signal pin

testPeriod = 3000; //set the test period

//set the pin mode to OUTPUT

pinMode(sPin, OUTPUT);

}

/*

Function to turn the electromagnet on. To turn the electromagnet on, set the

forward signal

pin on the L298N Motor driver HIGH.

*/

void Electromagnet::switchOn() {

digitalWrite(sPin, HIGH);

}

/*

Function to turn the electromagnet off. To turn the electromagnet off, set the

forward signal

pin on the L298N Motor driver LOW.

*/

void Electromagnet::switchOff() {

digitalWrite(sPin, LOW);

}

/*

Function to provide a test case for the electromagnet. Runs the electromagnet

high for

testPeriod ms, then low for testPeriod ms. Place in loop() to test.

*/

void Electromagnet::emagTest() {

switchOn();

delay(testPeriod);

switchOff();

delay(testPeriod);

}

Electromagnet.h
#ifndef Electromagnet_H

#define Electromagnet_H

#include <Arduino.h> //required to access arduino functionality

/*

This file contains a class for interacting with a single electromagnet, or a

set of

electromagnets wired to the same terminal on the relay board.

*/

class Electromagnet {

private:

//electromagnet signal pin from the ESP32

int sPin;

int testPeriod;

public:

Electromagnet(); //define a default constructor

Electromagnet(int s_pin);

void switchOn();

void switchOff();

void emagTest();

};

#endif

Motors.cpp
#include "Motors.h"

/*

This file contains an implementation of the motors class.

*/

/*

Init function for a motor class

*/

Motors::Motors() {

Motors(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

}

Motors::Motors(int servo_pin_L, int servo_pin_R, int m_pin_1_L, int m_pin_2_L,

int m_pin_1_R, int m_pin_2_R, int enc1_L, int enc2_L, int enc1_R, int enc2_R){

//define the servo pins

servoPinL = servo_pin_L;

servoPinR = servo_pin_R;

//define the motor pins

mPin1L = m_pin_1_L;

mPin2L = m_pin_2_L;

mPin1R = m_pin_1_R;

mPin2R = m_pin_2_R;

//define the encoder pins

encPin1L = enc1_L;

encPin2L = enc2_L;

encPin1R = enc1_R;

encPin2R = enc2_R;

//set the pin modes to OUTPUT

pinMode(servoPinL, OUTPUT);

pinMode(servoPinR, OUTPUT);

pinMode(mPin1L, OUTPUT);

pinMode(mPin2L, OUTPUT);

pinMode(mPin1R, OUTPUT);

pinMode(mPin2R, OUTPUT);

//set the encoder pins to INPUT

pinMode(encPin1L, INPUT);

pinMode(encPin2L, INPUT);

pinMode(encPin1R, INPUT);

pinMode(encPin2R, INPUT);

//set up encoders

ESP32Encoder::useInternalWeakPullResistors = UP; //Enable weak pullups

encoderL.attachHalfQuad(encPin1L, encPin2L);

encoderL.setCount(0); //INITIALIZE the encoder count to be zero!!

encoderR.attachHalfQuad(encPin1R, encPin2R);

encoderR.setCount(0); //INITIALIZE the encoder count to be zero!!

//set the default desired servo positions, 60 degrees (vertical) - 41

degrees is a bar starting position.

desPosServoL = 60;

desPosServoR = 60;

//set default desired motor positions

desPosMotorL = 0;

desPosMotorR = 0;

//define frequencies

servoFreqLow = 500; //500 for the Pololu servo

servoFreqHigh = 2500; //2500 for the Pololu servo

//define PWM constants

MAX_PWM = 180;

MIN_PWM = 0;

//define controller constants

Kp = 1;

//allocate the timers

ESP32PWM::allocateTimer(0);

ESP32PWM::allocateTimer(1);

ESP32PWM::allocateTimer(2);

ESP32PWM::allocateTimer(3);

//set the servo periods

servoL.setPeriodHertz(50);

servoR.setPeriodHertz(50);

//set the motor pin periods

motorL1.setPeriodHertz(50);

motorL2.setPeriodHertz(50);

motorR1.setPeriodHertz(50);

motorR2.setPeriodHertz(50);

//attach the servos to their PWM pins

servoL.attach(servoPinL, servoFreqLow, servoFreqHigh);

servoR.attach(servoPinR, servoFreqLow, servoFreqHigh);

//attach the motors pwm pins

motorL1.attach(mPin1L, servoFreqLow, servoFreqHigh);

motorL2.attach(mPin2L, servoFreqLow, servoFreqHigh);

motorR1.attach(mPin1R, servoFreqLow, servoFreqHigh);

motorR2.attach(mPin2R, servoFreqLow, servoFreqHigh);

//drive the servos to their initial position!

int startPos = 41; //option to begin it in the start position with one fwd

one back.

servoL.write(startPos); //writes it NOT to the vertical but to 60

servoR.write(startPos);

}

/*

Function to set the desired positions of the two servo motors.

Inputs:

des_pos_1 (int) : desired position in radians of the first servo

des_pos_2 (int) : desired position in radians of the second servo

*/

void Motors::setDesPos(int des_pos_servo_L, int des_pos_servo_R, int

des_pos_motor_L, int des_pos_motor_R) {

desPosServoL = des_pos_servo_L;

desPosServoR = des_pos_servo_R;

desPosMotorL = des_pos_motor_L;

desPosMotorR = des_pos_motor_R;

}

/*

Function to drive the servo motors to the desired position stored in the class

*/

void Motors::driveDes() {

driveServos(desPosServoL, desPosServoR);

driveDCL(desPosMotorL);

driveDCR(desPosMotorR);

}

/*

Function to drive the two servo motors

Inputs:

desPos1 (int) : desired position from 0 to 180 of the first servo

desPos2 (int) : desired position from 0 to 180 of the second servo

*/

void Motors::driveServos(int desPosL, int desPosR) {

//drive the first servo motor to desPos1

servoL.write(desPosL);

//derive the second servo motor to desPos2

servoR.write(desPosR);

return;

}

/*

Function to return the current angle of the DC motor, as read by the encoder

in ticks.

Returns:

motorAngle (int) : positional reading of the encoder in encoder units

*/

int Motors::getAngleMotorLeft() {

return (int32_t)encoderL.getCount();

}

int Motors::getAngleMotorRight() {

return (int32_t)encoderR.getCount();

}

/*

Function to drive the DC motor to the correct position using FB control

The right arm has a negative feedback gain as it is flipped.

Inputs:

des_pos (double) : desired position in radians. NOT the class attribute

*/

void Motors::driveDCL(int des_pos) {

//next, calculate the control input

int controlInput = floor(Kp*(des_pos - (int32_t)encoderL.getCount()));

//drive the motor with a PWM according to the control input

if (controlInput >= 0) {

//clamp the control input

controlInput = min(MAX_PWM, max(MIN_PWM, controlInput));

//write one pin high, the other low

motorL1.write(controlInput);

digitalWrite(mPin2L, LOW);

// motorL2.write(0);

} else {

//flip the sign of the control input

controlInput = -1*controlInput;

//clamp the control input

controlInput = min(MAX_PWM, max(MIN_PWM, controlInput));

//drive the motor

// motorL1.write(0);

digitalWrite(mPin1L, LOW);

motorL2.write(controlInput);

}

}

void Motors::driveDCR(int des_pos) {

//next, calculate the control input SWITCHING the sign of Kp to (-)

int controlInput = floor(-Kp*(des_pos - (int32_t)encoderR.getCount()));

//drive the motor with a PWM according to the control input

if (controlInput >= 0) {

//clamp the control input

controlInput = min(MAX_PWM, max(MIN_PWM, controlInput));

Serial.println(controlInput);

//write one pin high, the other low

motorR1.write(controlInput);

// motorR2.write(0);

digitalWrite(mPin2R, LOW);

} else {

//flip the sign of the control input

controlInput = -1*controlInput;

//clamp the control input

controlInput = min(MAX_PWM, max(MIN_PWM, controlInput));

Serial.println(controlInput);

//drive the motor

// motorR1.write(0);

digitalWrite(mPin1R, LOW);

motorR2.write(controlInput);

}

}

void Motors::driveOLTest() {

// motorR1.write(0);

digitalWrite(mPin2R, LOW);

motorR1.write(180);

}

void Motors::dcControllerTest() {

//give the controller a small setpoint that it must reach.Assume it starts

at zero.

int setpt = 300;

driveDCR(setpt);

}

Motors.h
#ifndef Motors_H

#define Motors_H

#include <Arduino.h> //required to access the arduino functions.

#include <ESP32Servo.h> //Servo library

#include <ESP32Encoder.h> //encoder library

/*

This file contains the utilities for driving all motors.

*/

class Motors {

public:

Motors(); //default constructor

Motors(int servo_pin_L, int servo_pin_R, int m_pin_1_L, int m_pin_2_L,

int m_pin_1_R, int m_pin_2_R, int enc1_L, int enc2_L, int enc1_R, int enc2_R);

void setDesPos(int des_pos_servo_L, int des_pos_servo_R, int

des_pos_motor_L, int des_pos_motor_R);

void driveDes();

int getAngleMotorLeft();

int getAngleMotorRight();

void driveServos(int desPosL, int desPosR);

void driveDCL(int des_pos);

void driveDCR(int des_pos);

void driveOLTest();

void dcControllerTest();

private:

//Servo motors

Servo servoL;

Servo servoR;

//DC Motor pins

Servo motorL1;

Servo motorL2;

Servo motorR1;

Servo motorR2;

//PWM pins for the servos

int servoPinL;

int servoPinR;

//PMW pins for the DC motors

int mPin1L;

int mPin2L;

int mPin1R;

int mPin2R;

//Encoder pins for DC motors

int encPin1L;

int encPin2L;

int encPin1R;

int encPin2R;

//Encoder object

ESP32Encoder encoderL;

ESP32Encoder encoderR;

//motor parameters

int MAX_PWM;

int MIN_PWM;

//controller paramters

double Kp = 1;

//desired angular position of the servos

int desPosServoL;

int desPosServoR;

//desired angular position of the motors

int desPosMotorL;

int desPosMotorR;

//Servo freqeuncies

int servoFreqLow; //500 for the Pololu servo

int servoFreqHigh; //2500 for the Pololu servo

};

#endif

StateMachine.cpp
#include "StateMachine.h"

/*

This file contains an implementation of the State Machine class

*/

/*

Initialization function for a state machine

Inputs:

dc_motor_left (DCMotor) : DC motor object, left arm

dc_motor_right (DCMotor) : DC motor object, right arm

servo_motors (ServoMotors) : Servo motors (L and R) object

num_bars (int) : number of total bars on the monkey bars

*/

StateMachine::StateMachine() {

//DEFAULT constructor

StateMachine(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13);

}

StateMachine::StateMachine(int servo_pin_L, int servo_pin_R, int m_pin_1_L,

int m_pin_2_L, int m_pin_1_R, int m_pin_2_R, int enc1_L, int enc2_L, int

enc1_R, int enc2_R, int s_pin_L, int s_pin_R, int num_bars) {

//store the motor objects in the class attributes

motors = Motors(servo_pin_L, servo_pin_R, m_pin_1_L, m_pin_2_L, m_pin_1_R,

m_pin_2_R, enc1_L, enc2_L, enc1_R, enc2_R);

//store the electromagnet objects

eMagLeft = Electromagnet(s_pin_L);

eMagRight = Electromagnet(s_pin_R);

//initialize system to be in the zero state

state = 0;

//set the number of bars traversed to be zero

barCounter = 0;

//set the number of total bars

numBars = num_bars;

//set the time constants

tInter = 1500; //intermediate stopping time between swings in ms.

}

/*

Function to update the state based on the current values of the system

*/

void StateMachine::updateState() {

//Finite state machine switch statement

switch (state) {

case 0:

/*

Case 0 is the initialization state. In state 0, the following

parameters are satisfied:

1. The right arm is in the forwards position on a bar, the left arm

is in the backwards

position on a bar.

2. The electromagnets on both arms are on.

3. Increment bar count by 1.

Entrance conditions:

...

Exit conditions:

This state is only visited for tInter time. It is the start state

of the system and is exited once

the start button has been engaged. If bar count exceeds total bars,

go to state 6 (terminal).

*/

Serial.println("hi");

//update the desired states

updateDesStates();

//First, ensure that both electromagnets are on

eMagLeft.switchOn();

eMagRight.switchOn();

if (firstRound == true) {

firstRound = false; //set it such that it is not the first

traversal

delay(100000);

} else {

//delay for tInter seconds. This is a debugging feature that

may be shortened in period.

delay(tInter);

}

if (barCounter >= numBars) {

//go to the terminal state, as the number of bars have been met

state = 6;

} else {

//go to state 2 and swing to the next bar

state = 1;

barCounter++; //increment the bar counter

}

break;

case 1:

/* FIRST part of a swing

In state 1, the following parameters are satisfies

1. Right arm is not moving.

2. Left arm has detached from the bar and is moving backwards

slightly to avoid hitting the bar.

3. Right electromagnets are on

4. Left electromagnets are off.

5. Wrist goes to flop position.

Entrance conditions:

- Case 1 may be entered only from case 0.

Exit conditions:

- Case 1 exits after a time period tSwing of seconds has passed and

the left arm has moved sufficiently far back. (moves to case 2)

*/

//update the desired states

updateDesStates();

//turn the left electromagnet off

eMagLeft.switchOff();

//turn the right electromagnet on

eMagRight.switchOn();

callCounter ++;

if (callCounter >= callCutoff) {

//reset the call counter

callCounter = 0;

//move to the next state

state = 2;

}

break;

case 2:

/* SECOND part of a swing

In state 2, the following parameters are satisfies

1. Right arm is moving to the backwards position and attached to a

bar

2. Left arm has detached from the bar and is moving forwards

3. Right electromagnets are on

4. Left electromagnets are on.

Entrance conditions:

- Case 1 may be entered only from case 0.

Exit conditions:

- Case 1 exits after a time period tSwing of seconds has passed and

the electromagnet is in position. (moves to case 3)

*/

//update the desired states

updateDesStates();

//turn the left electromagnet on.

eMagLeft.switchOn();

//turn the right electromagnet on (should already be on)

eMagRight.switchOn();

callCounter ++;

if (callCounter >= callCutoff) {

//reset the call counter

callCounter = 0;

//move to the next state

state = 3;

}

break;

case 3:

/*

In state 3, the following parameters are satisfied:

1. The right arm is in the backwards position on a bar

2. Left arm is in the forwards position on a bar

3. Right electromagnets are on

4. Left electromagnets are on

5. Increment bar count by 1

Entrance conditions:

- Case 3 may be enetered only from case 2

Exit conditions:

- Case 3 is exited a time tInter after entrance to prepare for the

next swing.

- Case 3 is exited to state 4 if the bar count exceeds number of

bars

*/

//update the desired states

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet on

eMagRight.switchOn();

//wait on the bar for tInter seconds

delay(tInter);

if (barCounter >= numBars) {

//go to the terminal state, as the number of bars have been met

state = 6;

} else {

//go to state 2 and swing to the next bar

state = 4;

barCounter++; //increment the bar counter

}

break;

case 4:

/* FIRST part of a swing

In state 1, the following parameters are satisfies

1. Right arm is moving slightly back to avoid hitting the bar

2. Left arm stays still.

3. Right electromagnets are off

4. Left electromagnets are on.

5. Move right wrist to "flop" configuration

Entrance conditions:

- Case 4 may be entered only from case 3.

Exit conditions:

- Case 1 exits after a time period tSwing of seconds has passed and

the left arm has moved sufficiently far back. (moves to case 2)

*/

//update the desired states

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet off

eMagRight.switchOff();

callCounter ++;

if (callCounter >= callCutoff) {

//reset the call counter

callCounter = 0;

//move to the next state

state = 5;

}

break;

case 5:

/* SECOND part of a swing

In state 4, the following parameters are satisfies

1. Right arm is moving freely forwards

2. Left arm is attached to a bar and moving to the backwards

position

3. Right electromagnets are on

4. Left electromagnets are on.

Entrance conditions:

- Case 5 may be entered only from case 4.

Exit conditions:

- Case 5 exits after a time period tSwing of seconds has passed and

the electromagnet is in position. (moves to case 0)

*/

//update the desired states

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet on

eMagRight.switchOn();

callCounter ++;

if (callCounter >= callCutoff) {

//reset the call counter

callCounter = 0;

//move to the next state

state = 0;

}

break;

case 6:

/*

In case 4, the following parameters are satisfied:

1. The right arm is fixed to a bar

2. The left arm is fixed to a bar

3. Right electromagnets are on

4. Left electromagnets are on

5. The bar count exceeds or equals the number of monkey bars.

Entrance conditions:

- State is entered if bar count exceeds or equals number of bars,

from case 0 or case 2.

Exit conditions:

- Robot must be reset to exit case 4, this is the terminal case

*/

eMagLeft.switchOn();

eMagRight.switchOn();

break;

}

}

void StateMachine::state0() {

Serial.println("hi");

//update the desired states

updateDesStates();

//First, ensure that both electromagnets are on

eMagLeft.switchOn();

eMagRight.switchOn();

if (firstRound == true) {

firstRound = false; //set it such that it is not the first traversal

delay(100000);

} else {

//delay for tInter seconds. This is a debugging feature that may be

shortened in period.

delay(tInter);

}

}

void StateMachine::state1() {

//update the desired states

updateDesStates();

//turn the left electromagnet off

eMagLeft.switchOff();

//turn the right electromagnet on

eMagRight.switchOn();

}

void StateMachine::state2() {

//update the desired states

updateDesStates();

//turn the left electromagnet on.

eMagLeft.switchOn();

//turn the right electromagnet on (should already be on)

eMagRight.switchOn();

}

void StateMachine::state3() {

//update the desired states

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet on

eMagRight.switchOn();

//wait on the bar for tInter seconds

delay(tInter);

}

void StateMachine::state4() {

//update the desired states

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet off

eMagRight.switchOff();

}

void StateMachine::state5() {

updateDesStates();

//turn the left electromagnet on

eMagLeft.switchOn();

//turn the right electromagnet on

eMagRight.switchOn();

}

/*

Function to retrieve the state of the system

*/

int StateMachine::getState() {

return state;

}

/*

Function to update the desired states of each motor depending on the state

*/

void StateMachine::updateDesStates() {

if (state == 0) {

//set desired motor states

motors.setDesPos(backwardSlightServoL, forwardServoR,

backwardSlightDCL, forwardDCR);

} else if (state == 1) {

//set the desired motor states

motors.setDesPos(backwardFullServoL, forwardServoR, backwardFullDCL,

forwardDCR);

} else if (state == 2) {

//set the desired motor states

motors.setDesPos(forwardServoL, backwardSlightDCR, forwardDCL,

backwardSlightDCR);

} else if (state == 3) {

//set the desired motor states

motors.setDesPos(forwardServoL, backwardSlightDCR, forwardDCL,

backwardSlightDCR);

} else if (state = 4) {

//set the desired motor states

motors.setDesPos(forwardDCL, backwardFullDCR, forwardDCL,

backwardFullDCR);

} else {

//set the desired DC states to be whatever they currently are

return;

}

}

StateMachine.h
#ifndef StateMachine_H

#define StateMachine_H

#include <Arduino.h> //required to access the arduino functions.

#include "Electromagnet.h"

#include "Motors.h"

/*

This file contains a class for the state machine of the system, which manages

the different

trajectories based on the state of the system.

*/

class StateMachine {

private:

int barCounter;

int numBars;

int tInter;

//Store desired states for each stage

int forwardServoR = 41; //right front, left back

int forwardServoL = 76; //left front, back right position

int backwardFullServoR = 90; //in this position, it's winding back to

avoid hitting a bar.

int backwardFullServoL = 20;

int backwardSlightServoR = 76; //In this position, it's sitting on a

bar

int backwardSlightServoL = 41;

int forwardDCR = 0; //right arm forward, left arm back

int forwardDCL = 942; //DC motor position when left arm is forward, WRT

a zero at left back

int backwardFullDCR = 534; //don't really care about wrist at full back

position.

int backwardFullDCL = -1593;

int backwardSlightDCR = 1045; //DC motor position when right arm sits

back on a bar

int backwardSlightDCL = 0;

int flopL = 534; //flop back angle to minimze the profile of the

electromagnet

int flopR = -1593;

//store information about first traversal

bool firstRound = true;

//store a call counter for the number of calls to each feedback loop

int callCounter = 0;

int callCutoff = 50; //gives around 1s of motion.

void updateDesStates();

public:

Motors motors;

Electromagnet eMagLeft;

Electromagnet eMagRight;

int state;

StateMachine();

StateMachine(int servo_pin_L, int servo_pin_R, int m_pin_1_L, int

m_pin_2_L, int m_pin_1_R, int m_pin_2_R, int enc1_L, int enc2_L, int enc1_R,

int enc2_R, int s_pin_L, int s_pin_R, int num_bars);

void updateState();

void state0();

void state1();

void state2();

void state3();

void state4();

void state5();

int getState(); //retrieve the state of the system

};

#endif

