
MEC ENG 102B: Little Buddy UC Berkeley

MEC ENG 102B Final Project Report
Little Buddy

Group 15: Luan Chuang, Katherine How,
Kaitlyn Lee, Kyle Miller

December 5, 2023

December 15, 2023 1 of 20

MEC ENG 102B: Little Buddy UC Berkeley

1 Project Overview
1.1 Project Goal
Our project focuses on general purpose automation. We initially wanted to build a two-legged walking
robot that can walk freely. However, we revised this idea to account for time and difficulty limitations,
and instead developed a bipedal, mini “acrobot”. This acrobot mimics movements similar to that of
a singular leg but simplified into a double inverted pendulum actuated at the upper joint. Our team
chose this project because we were interested in learning the controls required for under-actuated robotic
mechanisms.

1.2 High Level Strategy
We decided to have a two level linkage driven by a motor and a pulley belt. The bottom wheels would be
controlled by two separate motors. The controls are designed so that the robot could automatically adjust
its position to account for the top weight. It acts as a double inverted pendulum, with the wheels/body
as the first linkage and a pulley-driven arm as the second. We attach an adjustable mass at the top of the
second linkage. Our initial desired functionality was for the robot to be able to balance completely on its
own, as well as being able to translate without falling over. We intended for the robot to be autonomous
and battery powered. Our achieved functionality was that we were able balance the robot and have it be
controlled autonomously.

2 Integrated Physical System
More photos of the design, including the CAD model can be found in the Appendix 2.

2.1 Physical Model

‘

((a)) Front View ((b)) Side View ((c)) Electronics View

3 Function-Critical Design Decisions
The entire robot can be split into two bodies of a dual pendulum. The base of the robot is the first link,
and the pivoting arm of the robot is the second link. This definition was important in our center of mass
calibrations to optimize inertia values in the code.

3.1 Linkage 1: Base
Notably, the two wheels driving our entire acrobot were not included in our definition of the first linkage
because it was not a pivoting body. Everything else attached to the 3D printed base pivoted with the
robot, so was a part of the first linkage. We designed the CAD of the base to be able to support a
breadboard for our electronics as well as house 4 motors. Each motor was inserted into the 3D printed
base with heatset inserts. The height of the two beams on either side were dependent on the length of

December 15, 2023 2 of 20

MEC ENG 102B: Little Buddy UC Berkeley

the second link so that there would be enough clearance for a full 360 degree rotation. The lengths of
these supports were also limited by off-the-shelf timing belt specifications.

3.1.1 Subsystem: Drive Base
These two wheels are directly driven by a single motor each. The motors are supported by the bush-
ings (which experience a reaction force of 25N) which is within the bushing’s stiffness (250N at 120
RPM).

3.1.2 Motor Selection
Since we originally simulated just an acrobat (1 DoF, no wheels), the system could work with any motor
torque that surpasses friction (able to add Energy to the system), so to pick our actuators we set time
based goals. With a 3.5” Arm Link and a 0.25 kg load, our target is a linkage actuator that can swing
the system from inverted to standing in two swings, and a drive actuator that can handle the reaction
forces at base speed of 15in/s (using this as a benchmark).

For our linkage actuator calculations, we have simulated the motor torque and velocity needed to needed
to swing the linkage from low to high in two swings as shown here.

From this simulation data, we found an actuator with a 0.12 Nm stall torque and a 130 rpm peak, which
we plan on having two of for a total of 0.24 Nm. This roughly matches the recommended stall torque of
1/0.4 times the max static load we could see.

τl =
1

0.4
mrg =

1

0.4
(0.25kg)(0.09m)(9.8

m

s2
) = 0.27Nm

Using our 2D model simulation to estimate the required torques and velocities needed by our linkage
motor for our system to reach a stable position, the resulting graph can be see in Fig. 2(a).

The reaction torque needed by the wheel motors can be calculated as a ratio of the wheel and arm radius
as follows: τm = 1.5in

3.5inτl = 0.10Nm

For our drive motor, we have picked a desired velocity of 15 inches per second which corresponds to
about 90 RPM. We calculated the conversion like so: ωw = 15in/s

1.5in
60s
1min = 90RPM We see how the desired

criteria fit to the selected motor curve in in Fig. 2(b).

((a)) Linkage motor specifications ((b)) Drive Motor Specification

Based on our motor calculations, we needed a motor that captures and exceeds the reaction torque and
target velocity. Thus, we chose a motor with a max angular velocity of 150 RPM.

3.2 Linkage 2: Pivot
The upper linkage is actuated by two 130RPM DC gearmotors that drive a 12mm HTD3 timing belt at
a 1:1 ratio. The adjustable weights can be slid onto the round standoff at the top of the link and held in
place by a flange. The transmission is arranged as follows in Fig. 5(a).

December 15, 2023 3 of 20

https://drive.google.com/file/d/1xp5eNZo_PYKZLE3MtUgwgzq8ktKUgjTM/view?usp=share_link

MEC ENG 102B: Little Buddy UC Berkeley

3.2.1 Designing the Transmission
To determine the belt sizes for the transmission, we used a timing belt length calculator to pick our belt.
The timing belt calculator takes into account the desired size of and spacing between the pulleys to get
an off-the-shelf belt size with enough pretension to avoid slipping. Using the calculator, we adjusted the
desired center-to-center distance until we got a belt that we could purchase off the shelf (384 mm HTD3
Belt).
To reduce the friction between the linkages and the dead shaft, we lightly press-fitted oil-embedded
bearings onto each of the ends of the arms. Additionally, to decrease friction between the spacers and
linkages, we added thrust bearings. To increase the tension of the belts, we added a simple roller tensioner
to each belt that mounted directly onto the base, composed of a 1.5” long 8-32” screw, 3D printed roller,
and two locknuts to hold the tensioner in place on the base.

4 State Transition Diagram, Circuit Diagram
The state transition diagram is shown in Fig 3(a). The acrobot was wired as follows in Fig 3(b).

((a)) Our State Transition Diagram

RIGHTWHEEL RIGHT ARM

L298NV Driver LSMGDSO IMU

5V DGND

GND
3.34

12V

GN

⑧

·

5Y
GND
12V 5V

5V GND GND
↑

L298N Driver LEFT WHEEL LEFT ARM

((b)) Electrical Schematic

5 Reflections
Our team worked together well to distribute work for the manufacturing, design, control, and electronics
of our project, and collaborated throughout to make the acrobot a success. Once our design was done, we
were able to quickly assemble the acrobot. Upon reflection, we would have benefited from having a shared
calendar for our deadlines. Sometimes, we would miss deadlines due to a lack of communication over our
necessary deliverables. Also, it would have been better if we finalized our CAD and began printing our
linkages earlier so that we could iterate the base and pulleys more. Better internal communication and a
tighter design timeline would’ve helped us have more time for better controls implementation. We also
should have taken advantage of staff knowledge and asked for more help with design choices.

December 15, 2023 4 of 20

MEC ENG 102B: Little Buddy UC Berkeley

6 Appendices
6.1 Appendix 1: Bill of Materials

Category Listed Name Quantity Vendor Cost

Mechanical 4mm Rigid Flange Coupling 2 Amazon $9.99
12 mm HTD3 Timing Belt (384mm) 2 Amazon $6.99
1/4” Shaft Thrust Bearing 4 McMaster $12.08
1/4” Shaft Oil-Pressed Bearing 4 McMaster $2.28
1/4” Steel Round Shaft 1 McMaster $1.71
M3x15 Steel Screws 14 McMaster $6.40
M3 Washer 2 McMaster $2.19
3in Wheels for 4mm D Shaft 1 Pololu $9.95
1/4” Round, Female 8-32 Threaded 4” Standoff 1 McMaster $7.10
8-32 x3/8” Steel Screws 2 Had Them $0
M3 Heatset Inserts 4 McMaster $16.81
Steel Weights 12 Jacobs Scraps $0
8-32 x 1.5” Steel Screws 2 Home Depot $5.62
8-32 Locknut 4 Home Depot $0.80
1/4” Washer 2 McMaster $9.99

3D Prints HTD3 Pulley Coupled Link 2 N/A $0
Large Spacer 1 N/A $0
Side Spacers 2 N/A $0
HTD3 Motor Pulley 2 N/A $0
Base Structure 1 N/A $0
Tensioner Roller 2 N/A $0

Electrical ESP32 Huzzah 32 1 Lab Kit $0
HiLetGo L298N Motor Driver Module 2 Amazon $11.49
Solid Core Wire 3ft EECS Lab $0
LM317 Voltage Regulator 1 Lab Kit $0
0.1µF Capacitor 1 Lab Kit $0
1µF Capacitor 1 Lab Kit $0
Resistors (Assorted) 1 Lab Kit $0
DC Metal Gearmotor 130 RPM w/Encoder 2 Amazon $14.88
DC Metal Gearmotor 150 RPM w/Encoder 2 Amazon $14.88
12V A23 Battery 4 Amazon $6.98
A23 Battery Case 4 Amazon $6.49
Adhesive Velocro Cut up Amazon $6.69
SparkFun LSM6DSO IMU Sensor 1 Lab Kit $0
2 Pin Tactile Push Button 1 Lab Kit $0
Potentiometer 1 Lab Kit $0

Total Cost $167.68

Table 1: Complete Bill of Materials

To view the BOM with links to products included, view this sheet.

December 15, 2023 5 of 20

https://docs.google.com/spreadsheets/d/1VelRAHp_jvAidzLWaxGAwDVOIoRjyC6BdHzWEKS-deM/edit?usp=sharing

MEC ENG 102B: Little Buddy UC Berkeley

6.2 Appendix 2: CAD Model

Figure 4: Full CAD Model

Belts aren’t depicted in the CAD model.

((a)) Linkage 2 Transmission ((b)) Drivebase

December 15, 2023 6 of 20

MEC ENG 102B: Little Buddy UC Berkeley

6.3 Appendix 3: Full Code

Listing 1: Main.ino: Our State Machine and Target Control

1 #include <Arduino.h>
2 #include "Controller.h"
3

4 #define BTN 34
5 #define LED PIN 13
6 #define POT 39
7

8 // State Machine
9 enum Case { IDLE, CALIBRATE, BALANCE };

10 Case c = IDLE;
11 volatile bool buttonIsPressed = false;
12 volatile bool buttonT = false; // check timer interrupt 2
13 volatile bool ∆T = false; // check timer interrupt 1 (for 10ms)
14 volatile bool ∆T2 = false; // check timer interrupt 4 (for 12ms)
15 volatile bool calibrateT = false; // check timer interrupt 3
16

17 // Controller
18 Controller controller;
19 const float pi = 3.14159;
20

21 // Timers
22 hw timer t* timer0 = NULL; // main timer (for balancing) − 10 milliseconds
23 hw timer t* timer1 = NULL; // button timer (in between button presses) − 1 second
24 hw timer t* timer2 = NULL; // calibrate timer (for determining calibration time) − 3 ...

seconds
25 hw timer t* timer3 = NULL; // balancing timer for delay − 12 milliseconds
26 portMUX TYPE timerMux0 = portMUX INITIALIZER UNLOCKED;
27 portMUX TYPE timerMux1 = portMUX INITIALIZER UNLOCKED;
28 portMUX TYPE timerMux2 = portMUX INITIALIZER UNLOCKED;
29 portMUX TYPE timerMux3 = portMUX INITIALIZER UNLOCKED;
30

31 //Initialization −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 void IRAM ATTR buttonISR() {
33 buttonIsPressed = true;
34 }
35

36 void IRAM ATTR onTime0() {
37 portENTER CRITICAL ISR(&timerMux0);
38 ∆T = true; // the function to be called when timer interrupt is triggered
39 portEXIT CRITICAL ISR(&timerMux0);
40 }
41

42 void IRAM ATTR onTime1() {
43 timerStop(timer1);
44 }
45

46 void IRAM ATTR onTime2() {
47 portENTER CRITICAL ISR(&timerMux2);
48 calibrateT = true; // the function to be called when timer interrupt is triggered
49 portEXIT CRITICAL ISR(&timerMux2);
50 }
51

52 void IRAM ATTR onTime3() {
53 timerStop(timer3);
54 }
55

56 void setup() {

December 15, 2023 7 of 20

MEC ENG 102B: Little Buddy UC Berkeley

57 Serial.begin(9600);
58 pinMode(BTN, INPUT);
59 pinMode(POT, INPUT);
60 pinMode(LED PIN, OUTPUT);
61 attachInterrupt(BTN, buttonISR, RISING);
62

63 controller.init();
64

65 // initilize timers
66 timer0 = timerBegin(0, 80, true); // timer 0, MWDT clock period = 12.5 ...

ns * TIMGn Tx WDT CLK PRESCALE −> 12.5 ns * 80 −> 1000 ns = 1 us, countUp
67 timerAttachInterrupt(timer0, &onTime0, true); // edge (not level) triggered
68 timerAlarmWrite(timer0, 10000, true); // 10000 * 1 us = 10 ms, autoreload true
69

70 timer1 = timerBegin(1, 80, true); // timer 1, MWDT clock period = 12.5 ...
ns * TIMGn Tx WDT CLK PRESCALE −> 12.5 ns * 80 −> 1000 ns = 1 us, countUp

71 timerAttachInterrupt(timer1, &onTime1, true); // edge (not level) triggered
72 timerAlarmWrite(timer1, 1000000, true); // 1000000 * 1 us = 1 s, ...

autoreload true
73

74 timer2 = timerBegin(2, 80, true); // timer 2, MWDT clock period = 12.5 ...
ns * TIMGn Tx WDT CLK PRESCALE −> 12.5 ns * 80 −> 1000 ns = 1 us, countUp

75 timerAttachInterrupt(timer2, &onTime2, true); // edge (not level) triggered
76 timerAlarmWrite(timer2, 3000000, true); // 3000000 * 1 us = 3 s, ...

autoreload true
77

78 timer3 = timerBegin(3, 80, true); // timer 2, MWDT clock period = 12.5 ...
ns * TIMGn Tx WDT CLK PRESCALE −> 12.5 ns * 80 −> 1000 ns = 1 us, countUp

79 timerAttachInterrupt(timer3, &onTime3, true); // edge (not level) triggered
80 timerAlarmWrite(timer3, 12000, true); // 12000 * 1 us = 12 ms, autoreload true
81

82 // at least enable the timer alarms
83 timerAlarmEnable(timer0); // enable
84 timerAlarmEnable(timer1); // enable
85 timerAlarmEnable(timer2); // enable
86 timerAlarmEnable(timer3); // enable
87 timerStop(timer0);
88 timerStop(timer1);
89 timerStop(timer2);
90 timerStop(timer3);
91 }
92

93 void loop() {
94 controller.imu.update();
95

96 switch (c) {
97 case IDLE:
98 ledOff();
99 if (checkForButtonPress()) { // Check if button has been pressed

100 timerStart(timer2); // Reset Calibrate timer
101 c = CALIBRATE; // Change state to calibrate
102 }
103

104 controller.stopActuators();
105 break;
106

107 case CALIBRATE:
108 if (checkForButtonPress()) { // Check if button has been pressed
109 ledOff();
110 controller.stopActuators();
111 c = IDLE; // Change state to idle

December 15, 2023 8 of 20

MEC ENG 102B: Little Buddy UC Berkeley

112 }
113 timerStart(timer2);
114 if (calibrateT) { // Check if 3 seconds has passed in calibrate ...

mode (using timer 2)
115 portENTER CRITICAL(&timerMux2);
116 calibrateT = false; // reset calibrateT flag to false
117 portEXIT CRITICAL(&timerMux2);
118

119 timerStop(timer2);
120 ledOn();
121 controller.zeroState(); // Calibrate Sensors
122 c = BALANCE; // Change state to balancing
123 }
124

125 flashLight(); // Blink the LED
126 controller.stopActuators();
127

128 break;
129

130 case BALANCE:
131 ledOn();
132

133 if (checkForButtonPress() | | controller.falling()) { // Check if button has ...
been pressed, or if the bot has tilted too much

134 ledOff();
135 controller.stopActuators();
136 c = IDLE; // Change state to idle ...

(turn off actuators)
137 }
138 timerStart(timer0);
139 if (!∆T) {
140 timerStart(timer3);
141 if(timerStarted(timer3)) {} //if this is triggered, don't do anything ...

(consistent motor pulse, and prevents too small ms for deriving velocity)
142

143 portENTER CRITICAL(&timerMux3);
144 ∆T2 = false;
145 portENTER CRITICAL(&timerMux3);
146

147 controller.LW.update();
148 controller.RW.update();
149 controller.A2.update();
150 float potVal = analogRead(POT);
151 float targetPos = ((potVal/4095−0.5) / 5);
152 float target[6] = {targetPos, 0, 0, 0, 0, 0};
153 controller.setTarget(target); // Run actuators to stabilize at position & ...

velocity targets
154 }
155 timerStop(timer0);
156

157 portENTER CRITICAL(&timerMux0);
158 ∆T = false;
159 portENTER CRITICAL(&timerMux0);
160

161 break;
162 }
163 }
164

165 bool checkForButtonPress() {
166 if (timerStarted(timer1)) {
167 buttonIsPressed = false;

December 15, 2023 9 of 20

MEC ENG 102B: Little Buddy UC Berkeley

168 }
169 if (buttonIsPressed) {
170 buttonIsPressed = false;
171 timerStart(timer1);
172 return true;
173 }
174 return false;
175 }
176

177 void flashLight() {
178 if ((millis() − timerReadMilis(timer2)) / 500 % 2) {
179 ledOn();
180 } else {
181 ledOff();
182 }
183 }
184

185 void ledOn() {
186 digitalWrite(LED PIN, HIGH);
187 }
188

189 void ledOff() {
190 digitalWrite(LED PIN, LOW);
191 }

Listing 2: Controller.h: Our Control System (Actuator Feedback Loop)

1 #include "Motor.h"
2 #include "IMU.h"
3 #include "K.h"
4

5 class Controller {
6 private:
7 // Physical Properties
8 const float pi = 3.14159;
9 const float r = 0.04;

10

11 // Controls Variables
12 const float ∆ = 0.1;
13 float state[6];
14 float P[3] = {0, 0, 0};
15 float target[6];
16 const float fallingBound = 0.8*pi/2;
17 float integralTimer;
18

19 public:
20 // Objects
21 Motor LW;
22 Motor RW;
23 Motor A2;
24 IMU imu;
25

26 Controller() {}
27

28 void init() {
29 LW.init(14, 4, 21, 16, 17, 40);
30 RW.init(12, 15, 33, 5, 18, 40);
31 A2.init(19, 32, 27, 25, 26, 45);
32 imu.init();
33 }

December 15, 2023 10 of 20

MEC ENG 102B: Little Buddy UC Berkeley

34

35 void zeroState() {
36 LW.setRef();
37 RW.setRef();
38 A2.setRef();
39 imu.setRef();
40 updateState();
41 integralTimer = millis();
42 }
43

44 void stopActuators() {
45 LW.setPWM(0, 0);
46 RW.setPWM(0, 0);
47 A2.setPWM(0, 0);
48 }
49

50 void setTarget(float newTarget[]) {
51 for (int i = 0; i < 6; i++) {
52 target[i] = newTarget[i];
53 }
54 updateState();
55 controlActuators();
56 }
57

58 void updateState() {
59 state[0] = r * (−imu.getPos());// + (LW.getPos() + RW.getPos()) / 2);
60 state[1] = imu.getPos();
61 state[2] = A2.getPos();
62 state[3] = r * (−imu.getVel()); //+ (LW.getVel() + RW.getVel()) / 2);
63 state[4] = imu.getVel();
64 state[5] = //A2.getVel();
65

66 // State Transformation
67 state[1] = H[1][1] * state[1] + H[1][2] * state[2];
68 state[4] = H[4][4] * state[4] + H[4][5] * state[5];
69 }
70

71 void controlActuators() {
72 float TW = 0;
73 float TA2 = 0;
74 for (int i = 0; i < 6; i++) {
75 TW += K[0][i] * (target[i] − state[i]);
76 TA2 += K[1][i] * (target[i] − state[i]);
77 }
78 LW.setPWM(TW, 0.15);
79 RW.setPWM(TW, 0.15);
80 A2.setPWM(TA2, 0.4);
81 }
82

83 bool falling() {
84 return (abs(imu.getPos()) > fallingBound);
85 }
86 };

Listing 3: Motor.h: Our Motor and Integrated Encoder Class

1 #include <ESP32Encoder.h>
2

3 class Motor {
4 private:

December 15, 2023 11 of 20

MEC ENG 102B: Little Buddy UC Berkeley

5 int ENC A, ENC B, PWM, IN 1, IN 2, ticks;
6 float tickTimer, tickRate, radToTick;
7

8 ESP32Encoder encoder;
9

10 public:
11 Motor() {}
12

13 void init(int ENC A, int ENC B, int PWM, int IN 1, int IN 2, int reduction) {
14 ESP32Encoder::useInternalWeakPullResistors = UP;
15

16 this−>PWM = PWM;
17 this−>IN 1 = IN 1;
18 this−>IN 2 = IN 2;
19 pinMode(PWM, OUTPUT);
20 pinMode(IN 1, OUTPUT);
21 pinMode(IN 2, OUTPUT);
22 digitalWrite(IN 1, LOW);
23 digitalWrite(IN 2, LOW);
24

25 encoder.attachFullQuad(ENC A, ENC B);
26 encoder.setCount(0);
27

28 radToTick = (2 * 3.1415 * reduction);
29

30 tickTimer = millis();
31 }
32

33 void update() {
34 tickRate = (encoder.getCount() − ticks) / (millis() − tickTimer) * 1000;
35 ticks = encoder.getCount();
36 tickTimer = millis();
37 }
38

39 void setPWM(float voltage, float frictionVoltage) {
40 int pwm = constrain(int(255 * voltage), −255, 255);
41 int frictionpwm = constrain(int(255 * (abs(voltage) + abs(frictionVoltage))), ...

0, 255);
42 analogWrite(PWM, abs(frictionpwm));
43 if (abs(pwm) < 1) {
44 digitalWrite(IN 1, LOW);
45 digitalWrite(IN 2, LOW);
46 } else if (pwm > 0) {
47 digitalWrite(IN 1, HIGH);
48 digitalWrite(IN 2, LOW);
49 } else {
50 digitalWrite(IN 1, LOW);
51 digitalWrite(IN 2, HIGH);
52 }
53 }
54

55 float getPos() {
56 return encoder.getCount() / radToTick;
57 }
58

59 float getVel() {
60 return tickRate / radToTick;
61 }
62

63 void setRef() {
64 encoder.clearCount();

December 15, 2023 12 of 20

MEC ENG 102B: Little Buddy UC Berkeley

65 ticks = 0;
66 }
67 };

Listing 4: IMU.h: Our Wrapper and Position Integrator for the LSM6DSO

1 #include "SparkFunLSM6DSO.h"
2 #include "Wire.h"
3 #include "Kalman.h"
4

5 class IMU {
6 private:
7 float accY, accZ;
8 float gyroX, gyroXangle;
9 float angRef;

10 float timer;
11

12 Kalman kalman;
13

14 public:
15 LSM6DSO myIMU;
16

17 IMU() {}
18

19 void init() {
20 Wire.begin(23, 22);
21 delay(10);
22 myIMU.begin();
23 myIMU.initialize(BASIC SETTINGS);
24 }
25

26 void update() {
27 accY = myIMU.readFloatAccelY();
28 accZ = myIMU.readFloatAccelZ();
29 gyroX = myIMU.readFloatGyroX() / 131;
30

31 float dt = (millis() − timer) / 1000;
32 timer = millis();
33

34 double roll = atan2(accY, accZ) * RAD TO DEG;
35

36 if ((roll < −90 && gyroXangle > 90) | | (roll > 90 && gyroXangle < −90)) {
37 kalman.setAngle(roll);
38 gyroXangle = roll;
39 } else
40 gyroXangle = kalman.getAngle(roll, gyroX, dt);
41 }
42

43 float getPos() {
44 return (gyroXangle − angRef) * DEG TO RAD;
45 }
46

47 float getVel() {
48 return gyroX * DEG TO RAD;
49 }
50

51 void setRef() {
52 accY = myIMU.readFloatAccelY();
53 accZ = myIMU.readFloatAccelZ();
54

December 15, 2023 13 of 20

MEC ENG 102B: Little Buddy UC Berkeley

55 double roll = atan2(accY, accZ) * RAD TO DEG;
56 kalman.setAngle(roll);
57

58 gyroXangle = roll;
59 angRef = gyroXangle;
60

61 timer = millis();
62 }
63 };

Listing 5: K.h: Our Gains and State Transformation Computed via MATALB LQR Cost Functions

1 const float K[2][6] = {{−6.179, 30.4414, −0.64335, −5.2686, 11.493, −1.2754}, ...
{−0.95826, 3.9051, 1.26747, −0.62286, 2.4848, −0.26032}};

2 const float H[6][6] = {{1, 0, 0, 0, 0, 0}, {0, 0.46639, 0.018222, 0, 0, 0}, {0, 0, 1, ...
0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0.18413, 0.15157}, {0, 0, 0, 0, 0, 1}};

6.4 Appendix 4A: 2D Model
6.4.1 Variables & Definitions

Parameter Value Units Description

L1 m Length of link 1

L2 m Length of link 2

θ1 rad Angle of link 1 from vertical

θ2 rad Angle of link 2 from link 1

θw rad Angle of wheel from link 1

p0 Base of link 1 & mounting point of wheel

mw kg Mass of the wheel

m1 kg Mass of link 1

m2 kg Mass of link 2

Fx N Translational force provided by the wheel

r 0.04 m Radius of wheel

τ2 Nm Motor torque on link 2

Dw
0 Center of mass of the wheel

D1
0 Center of mass of link 1

D2
0 Center of mass of link 2

x m X position of wheel from initialization

Lc1 m Length to center of mass of link 1

Lc2 m Length to center of mass of link 2

Ḋw
0 Velocity of the center of mass of the wheel

Ḋ1
0 Velocity of the center of mass of link 1

Ḋ2
0 Velocity of the center of mass of link 2

Jvi Linear velocity Jacobian of coordinate frame

ωi Angular velocity of relevant coordinate frame

Jwi Angular velocity Jacobian of relevant joint

Jvw Linear velocity Jacobian of wheel coordinate frame

Jv1 Linear velocity Jacobian of link 1 coordinate frame

Jv2 Linear velocity Jacobian of link 2 coordinate frame

Jww Angular velocity Jacobian of wheel coordinate frame

Jw1 Angular velocity Jacobian of link 1 coordinate frame

December 15, 2023 14 of 20

MEC ENG 102B: Little Buddy UC Berkeley

Jw2 Angular velocity Jacobian of link 2 coordinate frame

Q Lagrangian State vector (x position of wheel, angle of link 1, angle of link 2)

M Inertial matrix

V Coriolis & centrifugal force vector

G Gravitational force vector

T External force vector

P Potential energy

Table 2: System parameters in order of appearance

6.5 Appendix 4B: 2D Model

y

x

 θ

 θ

1

2

L1

L2 Actuator

Free Pivot

L1 COM

L2 COM

Figure 6: Kinematic model of our base system with relevant system parameters

6.5.1 Kinematics and Jacobians
Definitions:

c1 = cos θ1, c12 = cos(θ1 + θ2), x = r(θw − θ1), Fx =
τw
r

CoM Positions:

Dw
0 =

[
x
0

]
, D1

0 =

[
x− Lc1s1
Lc1c1

]
, D2

0 =

[
x− L1s1 + Lc2s12
L1c1 − Lc2c12

]
CoM Velocities:

Ḋw
0 =

[
ẋ
0

]
, D1

0 =

[
ẋ− Lc1θ̇1c1
−Lc1θ̇1s1

]
, D2

0 =

[
ẋ− L1θ̇1c1 + Lc2(θ̇1 + θ̇2)c12
−L1θ̇1s1 + Lc2(θ̇1 + θ̇2)s12

]
Jacobians:

Ḋi
0 = Jvi

 ˙θw
θ̇1
θ̇2

 , ωi = Jωi

 ˙θw
θ̇1
θ̇2


December 15, 2023 15 of 20

MEC ENG 102B: Little Buddy UC Berkeley

Jvw =

[
1 0 0
0 0 0

]
, Jωw = 0

Jv1 =

[
1 −Lc1c1 0
0 −Lc1s1 0

]
, Jω1 =

[
0 1 0

]
Jv2 =

[
1 −L1c1 + Lc2c12 Lc2c12
0 −L1c1 + Lc2c12 Lc2c12

]
, Jω2 =

[
0 1 1

]
6.5.2 Lagrangian Dynamics
State Matrix:

Q =

x
θ1
θ2


Base Equation:

MQ̈+ V +G = T

Inertial Matrix:
M = Σ(miJ

T
viJvi + JT

ωiIciJωi)

M =

 mw +m1 +m2 −m1Lc1c1 +m2(−L1c1 + Lc2c12) m2Lc2c12
−m1Lc1c1 +m2(−L1c1 + Lc2c12) Ic1 + Ic2 +m1L

2
c1 +m2(L

2
1 + L2

c2 − 2L1Lc2c2) Ic2 +m2Lc2(Lc2 − L1c2)
m2Lc2c12 Ic2 +m2Lc2(Lc2 − L1c2) Ic2 +m2L

2
c2


Coriolis and Centrifugal Vector:

V = ṀQ̇− 1

2

Q̇T ∂M
∂x Q̇

Q̇T ∂M
∂θ1

Q̇

Q̇T ∂M
∂θ2

Q̇



Ṁ =

 0 σ −m2Lc2(θ̇1 + θ̇2)s12
σ 2m2L1Lc2θ̇2s2 m2Lc2L1θ̇2s2

−m2Lc2(θ̇1 + θ̇2)s12 m2Lc2L1θ̇2s2 0


σ = Lc1θ̇1s1 +m2(L1θ̇1s1 − Lc2(θ̇1 + θ̇2)s12)

V =

m1Lc1θ̇1
2
s1 +m2(L1θ̇1

2
s1 − Lc2(θ̇1 + θ̇2)

2s12)

m2L1Lc2θ̇2(2θ̇1 + θ̇2)s2

−m2L1Lc2θ̇1
2
s2


Gravity Vector:

P = m1gLc1c1 +m2g(L1c1 − Lc2c12)

G =
∂

∂Q
P =

 0
−m1gLc1s1 +m2g(−L1s1 + Lc2s12)

m2gLc2s12


External Force Vector:

T =

Fx

0
τ2



December 15, 2023 16 of 20

MEC ENG 102B: Little Buddy UC Berkeley

Motor Torque Model:

τ =
k

R
(V − kω)

Max Torque (ω = 0):

τm =
k

R
Vm → k

R
=

τm
Vm

Max Velocity (τ = 0):

0 = (Vm − kωm) → k =
Vm

ωm

Motor Torque Model:

τ =
τm
Vm

(V − Vm

ωm
ω) = τm(

V

Vm
− ω

ωm
)

With Gear Ratio:

τ = Gτm(
V

Vm
−G

ω

ωm
)

ωw =
ẋ

r
+ θ̇2

External Force Vector:

T =

Fx

0
τ2

 =

Gwτm
r (Vw −Gw

ωw
ωm

)

0
Gτm(V2 −G2

ω2
ωm

)

 =

Gwτm
r (Vw −Gw

ẋ
r
+θ̇1
ωm

)

0

G2τm(V2 −G2
θ̇2
ωm

)


Base Equation Expanded:

M

 ẍ

θ̈1
θ̈2

+
m1Lc1θ̇1

2
s1 +m2(L1θ̇1

2
s1 − Lc2(θ̇1 + θ̇2)

2s12)

m2L1Lc2θ̇2(2θ̇1 + θ̇2)s2

−m2L1Lc2θ̇1
2
s2

+
 0
−m1gLc1s1 +m2g(−L1s1 + Lc2s12)

m2gLc2s12

 =

Fx

0
τ2


6.6 Appendix 4C: Control System
6.6.1 State Space Background
The method of control system is State Space, where q is the state vector, U is the input vector, A is the
state matrix, and B is the input to state matrix. Through this linear system, we can compute an array
of gains K, that determine our desired inputs given a current state q and state qt:

q̇ = Aq +Bu

u = K(qt − q)

In our case, the state space state vector is q =

[
Q

Q̇

]
, where Q is the Lagrangian state matrix. Our input

vector is the voltages of our motors

u =

[
Vw

V2

]
. The target state vector qt can be fixed (such as balancing the cart at an equilibrium point) or dynamic
(such as following the trajectory of a pendulum swinging upwards).

December 15, 2023 17 of 20

MEC ENG 102B: Little Buddy UC Berkeley

6.6.2 LQR Background
https://www.mathworks.com/help/control/ref/lti.lqr.html

Our method of computing K is a Linear-Quadratic Regulator (LQR). We use MATLAB to compute this,
it takes in an A, B, Q, and R matrices and computes K via the algebriac Riccati equation. Q is the
State-cost weighted matrix. R is the Input-cost weighted matrix. Q and R are diagonal matrices, with
squared cost values corresponding to state error and input effort respectively.

These values are selected by Bryson’s rule, where the value should be 1
max error2

. For example, our we’ve

set 1 as our maximum voltage value, so our R matrix looks like R =

[
1
12

0
0 1

12

]
. An exampled of a Q

value could be the max error for the first link state at π
6 . The Q value would then be 6

π

2
. The Q values

provide the most opportunity for tuning a system, and offer infinite solutions for a system. Too large
of Q values will be saturated by actuator capabilities, and too small of Q values will not cause a quick
enough response (example, the cart tipping instead of recovering from a disturbance).

6.7 Appendix 4D: Jacobian Linearization
6.7.1 Overview
Our system is nonlinear, and we must linearize it to put into state space form. To do so, we must pick
an equilibrium point q0 and u0 and can assume the system will act linear for small distances around the
equilibrium points. To solve this problem, We instead consider the state space matrix of the change in
state:

˙̃q = Aq̃ +Bũ

q̃ = q − q0

ũ = u− u0

We can calculate the A and B matrix via a Jacobian. As we can see, A and B are constant at a given
equilibrium point. If we can keep the equilibrium point constant (such as balancing vertically), this can
be very useful as modeling tools for LTI systems are well developed. For systems such as the acrobat
swing up, the state changes very significantly and the equilibrium point must change, and so current
state is a factor in the K gain matrix:

q̇ = f(q, u)

A =
∂f(q, u)

∂q
|q0,u0 , B =

∂f(q, u)

∂u
|q0,u0

For the given K value determined by using LQR on the linearized state space, we note that error is
the same using an equilibrium point, and therefore we can use this K with just our state and target
state.

ũ = K(q̃t − q̃) = K((qt − q0)− (q − q0)) = K(q − q0)

6.7.2 Our System
For our Lagriangian system, we can determine our Jacobian and state space matrix as follows. Note
Inertia matrix M well known to always be invertible.

[
Q̇

Q̈

]
= f(Q, Q̇, u) =

[
Q̇

M−1(T − V −G)

]

q =

[
Q̇

Q̈

]
, ˙̃q =

∂f(q, u)

∂q
|q0,u0 q̃ +

∂f(q, u)

∂u
|q0,u0 ũ

December 15, 2023 18 of 20

MEC ENG 102B: Little Buddy UC Berkeley

Since Q̇ is equal to only itself, we know it’s Jacobian relative to Q will be 0 and it’s Jacobian relative
to itself will be the identity matrix. Though not needed for computation, we can view this reduction
as:

f1(Q, Q̇, u) = M−1(T − V −G)[
˙̃Q
¨̃Q

]
=

[
0 I

∂f1
∂Q |Q0,Q̇0,u0

∂f1
∂Q̇

|Q0,Q̇0,u0

][
Q̃
˙̃Q

]
+

[
0

∂f1
∂u |Q0,Q̇0,u0

]
ũ

Note: the Jacobian for the x position state is 0, so our system does not behave differently after translating.
However, it does change with x velocity, as the wheel actuator requires more voltage to produce the same
torque at a larger velocity.

6.7.3 Discretization
Since our simulation and real world processor operate discretely with a time step ∆, we must use the
discrete form of the state space matrix and MATLAB’s discrete LQR calculator. For a continuous
system:

q̇(t) = Acq(t) +Bcu(t)

This equivalent discrete system is (note q on left instead of q̇):

q[k + 1] = Adq[k] +Bdu[k]

Ad = I +∆Ac, Bd = ∆Bc

For our Lagrangian system, this discrete model will be:[
Q̃
˙̃Q

]
=

(
I +∆

[
0 I

∂f1
∂Q |Q0,Q̇0,u0

∂f1
∂Q̇

|Q0,Q̇0,u0

][
Q̃
˙̃Q

])
+∆

[
0

∂f1
∂u |Q0,Q̇0,u0

]
ũ

The discretization is very useful if the model’s linearization point must change. In this case, you can
take the linearization point to be the previous time step when computing the next change in input
ũ[k + 1]:

q̃[k] = q[k]− q0 = q[k]− q[k − 1]

ũ[k] = u[k]− u0 = u[k]− u[k − 1]

6.8 Appendix 4E: 2D MATLAB Simulation
6.8.1 2D Simulation Control System Derivation
To help validate our project goal and learn more about the double inverted pendulum as a controls
problem, we wanted to simulate a controllable double inverted pendulum to gain insight on the physics
behind the system and the different approaches to controlling an underactuated system.

To develop this test simulation, we looked at various approaches used to solve this problem online. A
notable exampled was this course from MIT on underactuated robots that explains in depth the dynamics
behind the double inverted pendulum. Using these dynamic equations, we were able to successfully
simulate the acrobot as shown in the video below. The MATLAB script and equations used to generate
the video can be found in Appendix II - LQR Swing.

6.8.2 2D Simulation Demo Video
A screen recording of our 2D double inverted pendulum can be found linked here.

December 15, 2023 19 of 20

https://underactuated.mit.edu/acrobot.html
www.link.com

MEC ENG 102B: Little Buddy UC Berkeley

6.8.3 Lagrangian with Link Point Mass Simplification

I1 = I2 = mw = x = ẋ = ẍ = 0

M

[
θ̈1
θ̈2

]
+

[
m2L1Lc2θ̇2(2θ̇1 + θ̇2)s2

−m2L1Lc2θ̇1
2
s2

]
+

[
−m1gLc1s1 +m2g(−L1s1 + Lc2s12)

m2gLc2s12

]
=

[
0
τ2

]

M =

[
m1L

2
c1 +m2(L

2
1 + L2

c2 − 2L1Lc2c2) m2Lc2(Lc2 − L1c2)
m2Lc2(Lc2 − L1c2) m2L

2
c2

]
Matches the professor Kazerooni’s Lagrangian example, except for sign changes.

6.8.4 3D Simulation Control System Derivation

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 7: 3DoF Matlab Simulation

Using the derived state space equations and the 2D simulation shown above as a baseline, we were able
to generate a MATLAB script to simulte the 3DoF version of this system that matches the hardware we
built.

The system controller for the 3DoF simulation uses the same approach as the 2DoF one. A new Jacobian is
calculated at each timestep & used to determine optimized controller gains using the LQR method.

The full code & equations used in this simulation can be found in Appendix IV - Matlab Simulation Main
Scripts.

6.8.5 3D Simulation Demo Video
A screen recording of the 3DoF simulation can be found linked here.

6.9 Appendix 4F: Implementation
6.9.1 One Moving Link Lagrangian Simplification

I1 = I2 = m2 = Lc2 = θ2 = θ̇2 = θ̈2 = 0, Lc1 = L1[
mw +m1 −m1L1c1
−m1L1c1 m1L

2
1

] [
ẍ

θ̈1

]
+

[
m1L1θ̇1

2
s1

0

]
+

[
0

−m1gL1s1

]
=

[
Fx

0

]
Matches Slide 15 of UMass class pole-cart (which used the same coordinate frame as we did) - so hopefully
some validation that our equations are right!

December 15, 2023 20 of 20

https://drive.google.com/file/d/116C6Ax8XlZbCWbABavNBOUhte7r2Iack/view?usp=sharing
https://www-robotics.cs.umass.edu/~grupen/503/SLIDES/cart-pole.pdf

	Project Overview
	Project Goal
	High Level Strategy

	Integrated Physical System
	Physical Model

	Function-Critical Design Decisions
	Linkage 1: Base
	Subsystem: Drive Base
	Motor Selection

	Linkage 2: Pivot
	Designing the Transmission

	State Transition Diagram, Circuit Diagram
	Reflections
	Appendices
	Appendix 1: Bill of Materials
	Appendix 2: CAD Model
	Appendix 3: Full Code
	Appendix 4A: 2D Model
	Variables & Definitions

	Appendix 4B: 2D Model
	Kinematics and Jacobians
	Lagrangian Dynamics

	Appendix 4C: Control System
	State Space Background
	LQR Background

	Appendix 4D: Jacobian Linearization
	Overview
	Our System
	Discretization

	Appendix 4E: 2D MATLAB Simulation
	2D Simulation Control System Derivation
	2D Simulation Demo Video
	Lagrangian with Link Point Mass Simplification
	3D Simulation Control System Derivation
	3D Simulation Demo Video

	Appendix 4F: Implementation
	One Moving Link Lagrangian Simplification

