
ME102B - Assistive Rotating Toolbox

Nolan Herbert, Henry Libermann, Vic May

December 19, 2024

Opportunity
Often when building you will find yourself in need of a tool that you can’t seem to find.

That’s where the assistive rotating toolbox comes in. By simply controlling the toolbox to rotate
the correct compartment to the front then pressing a button, the tool you need will be pushed
out for you to grab, use, then place back in the toolbox. This allows you to stay organized and
efficient while working without having to pile your tools on the ground next to you or run back
and forth to the toolbox when something you need wasn’t grabbed the first time.

High Level Strategy
1.) Select amount of items and place them in the desired compartment accordingly
2.) Turn the dial to bring the desired item to the intended position
3.) Press the button to push the item compartment out
4.) Remove the desired item

The overall structure has not changed since our original high level strategy was
Introduced, but some significant changes have been made. Where we originally intended for the
selection to be voice activated, we instead opted for the rotation of the platform housing the
compartments to be operated by hand. We did so to simplify the code and make integration a
much simpler task while still demonstrating the same functionality. The second major change
was the inclusion of the button. Originally we intended for the compartments to move to the
desired location and then push the compartment out in one fluid motion, but the final product
had the pushing of the compartment operated by a button press. This was done to give the user
more control over the timing of the item release. These changes did alter the use case of the
item. What was originally intended to be hands free now requires physical inputs, which means
that the original goal of continuing work while tools are delivered to the user had to be altered.

Photos of Device

Function Critical Decisions
We elected to drive the rotational element of our toolbox using gears, in order to

maximize torque and prevent slippage between the lazy susan bearing and rotational motor.
The same motors (provided in our lab kits) were used for the pushing/pulling mechanism and
the rotational driver to simplify wiring and use a single ESP32. The relatively lightweight
materials of laser cut wood and PLA were substituted for heavier prototyping materials to
reduce the necessary force applied for rotation.
Related Calculations:
Estimated load: 700 g = 0.7 kg
r = 6 in = 0.1524 m
Angular velocity of motor (omega): 8 counts per revolution

Estimated force applied in the z-axis (Fz): 0. 7 𝑘𝑔 · 9. 81 𝑚/𝑠2 = 6. 867 (𝑘𝑔 · 𝑚)/𝑠2
Estimated force applied in the x-y plane (Fxy): 8 counts per rev * 0.7 kg = 5.6 kg*counts per rev
Torque: 0.85344 kg*m*counts per revτ = 𝑟𝐹 =
Gear ratio: 12 in / 1 in = 12

Circuit & State Transition Diagrams

Above: Circuit diagram of final setup

Above: State Transition Diagram

Reflection
Overall, the members of our team agree that the execution of this project could have

been much better. Although we were able to achieve some level of success in regards to basic
functionality and part design, the final product was plagued with issues that could have easily
been avoided. Our group's greatest strength was creating the initial concept and quickly
identifying necessary components. We were able to quickly acquire all off the shelf hardware
long before we were able to assemble our prototype. Our biggest challenge was integrating all
of our hardware in a timely fashion. Unfortunately, we did run into some unanticipated issues
that greatly set us behind schedule, but this could have been avoided if we began to
manufacture our parts and test fit everything even just one week sooner. We were forced to
assemble everything at the last minute, which left us with no time to test and troubleshoot our
product. This resulted in a project that technically functioned and met minimum requirements,
but lacked a sense of refinement. As aspiring engineers we seek to produce great designs that
excel at their desired function, and what we produced just didn’t meet those expectations.
However, we know exactly what we need to fix and what we could have done better. Our
biggest takeaway from this is to not underestimate just how meticulous the process of
integration and manufacturing is. Both processes are time consuming and critical to creating a
reliable project.

Video: 102B.mov

https://drive.google.com/file/d/1EEffAND9hHCISmfCRrUqrs1wXI6bdxED/view?usp=sharing

Appendix

Bill Of Materials
Total
Cost
(w/o
tax)

$72.02

(Exclu
ding
Reject
ed)

Total
Spent
(w/o
tax)

$72.02 (Ordered and
Arrived)

ASME Grant
Amount $156.03

Item
Comm
ents Status

Who
added
it

Listed
Name/
Produ
ct
Numb
er Link Vendor

Cost/
Item

Order
Quantit
y Cost

Who's
Buyin
g/Maki
ng

Lazy
Susan
Bearin
g

12",
Possibly
going to
get one
from
goodwill

Arrived Nolan

TamBee
12 Inch
Lazy
Susan
Hardwar
e Heavy
Duty
Metal
Rotating
Hardwar
e
Turntabl
e
Bearing

Link Amazon $22.99 1 $22.99 Nolan

Gear
Rack

In place
of linear
actuator,
requires
gear and
motor
(will have
to cut
down to
size)

Arrived Nolan

20
Degree
Pressur
e Angle
Gear
Rack,
0.8
Module
/
2662N5
6

Link McMaster
-Carr $3.80 2 $7.60 Nolan

Pinion Drives
rack Arrived Nolan

20
Degree
Pressur
e Angle
Plastic
Gear /

Link McMaster
-Carr $5.72 2 $11.44 Nolan

https://www.amazon.com/dp/B01L8EHD6K/?_encoding=UTF8&pd_rd_i=B07D8PJ2BK&ref_=sbx_be_s_sparkle_ssd_tt&qid=1727836016&pd_rd_w=V2iga&content-id=amzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942%3Aamzn1.sym.8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_p=8591358d-1345-4efd-9d50-5bd4e69cd942&pf_rd_r=QZ52KYGF37972PQF208T&pd_rd_wg=d3iLf&pd_rd_r=b9ea5eca-220e-43fe-b2fb-2c63532c6790&pd_rd_plhdr=t&th=1
https://www.mcmaster.com/2662N56/
https://www.mcmaster.com/2662N322/

2662N3
22

Motor
s

Lab Kit
motors
are free

Arrived Nolan Lab Kit $0.00 2 $0.00 All

Motor
brack
et

In lab kit Arrived Nolan Lab Kit $0.00 2 $0.00 All

Bolts

M3, for
gear rack
attachme
nt (25 per
package)

Arrived Nolan

Zinc-Fla
ke-Coat
ed Alloy
Steel
Socket
Head
Screw /
91274A
111

Link McMaster
-Carr $3.95 1 $3.95 Nolan

Nuts
M3 (100
per
package)

Arrived Nolan

Steel
Hex Nut
/
90592A
009

Link McMaster
-Carr $2.23 1 $2.23 Nolan

Plastit
e
Screw

M3 (for
electrom
agnet to
rack
connectio
n, pack of
50)

Arrived Nolan

Stainles
s Steel
Flat
Head
Thread-
Forming
Screws
for
Plastic /
90485A
445

Link McMaster
-Carr $7.26 1 $7.26 Nolan

Electr
omag
net

Used to
pull back
empty
compart
ment

Arrived Nolan

5V
ELECT
ROMAG
NET 2.5
KG
HOLDIN
G

Link DigiKey $7.50 1 $7.50 Nolan

Rack
Suppo
rts

Custom
Made
(Cost
included
in

Arrived Nolan 4 $0.00 Nolan

https://www.mcmaster.com/91274A111/
https://www.mcmaster.com/90592A009/
https://www.mcmaster.com/90485A445/
https://www.digikey.com/en/products/detail/adafruit-industries-llc/3872/9603611

magnet
holder
cost)

Electr
omag
net
Holde
r

Custom
Made Arrived Nolan $1.76 1 $1.76 Nolan

Leg
Suppo
rts

Custom
Made
(set of 3)

Arrived Nolan $7.29 1 $7.29 Nolan

Centr
al
Suppo
rt

Custom
Made Arrived Nolan $6.23 1 $6.23 Henry

Cente
r
Suppo
rt Leg

Custom
Made Arrived Henry $1.29 1 $1.29 Henry

Comp
artme
nts

Custom
Made Arrived Nolan $0.68 8 $5.44 Henry/

Vic

Comp
artme
nt
Holde
r

Custom
Made Arrived Nolan $5.44 1 $5.44 Henry

Outer
Gear

Custom
Made Arrived Henry $7.12 1 $7.12 Henry

Outer
Motor
Gear

Custom
Made Arrived Henry $1.07 1 $1.07 Henry

Suppo
rt
Ring

Custom
Made Arrived Henry $2.72 1 $2.72 Henry

Suppo
rt
Ring
Legs

Custom
Made Arrived Henry $4.62 1 $4.62 Henry

CAD

Rack and pinion linear motion mechanism

Outer ring gear rotation mechanism

Isometric View

Code
#include <Arduino.h>

#include <ESP32Encoder.h>

#define BTN 32 // declare the button ED pin number

#define BIN_1 26

#define BIN_2 25

#define POT 15

#define BIN_3 4

byte state = 0;

ESP32Encoder encoder;

int theta = 0;

int thetaDes = 0;

int thetaMax = 455; // 75.8 * 8 counts per revolution

int D = 0;

int potReading = 0;

int err = 0;

int err_sum = 0;

int Kp = 4; // TUNE THESE VALUES TO CHANGE CONTROLLER PERFORMANCE

int Ki = 0.095;

int IMax = 150;

//Setup variables

volatile bool buttonPressed = false;

volatile bool DebouncingFlag = false;

//Setup interrupt variables

volatile int counter = 0; // encoder count

//volatile bool interruptCount = false; // check timer interrupt

//int totalInterrupts = 0; // # of interrupts triggered

hw_timer_t*timer0 = NULL;

portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;

// setting PWM properties ----------------------------

const int freq = 5000;

const int resolution = 8;

const int MAX_PWM_VOLTAGE = 255;

const int NOM_PWM_VOLTAGE = 100;

int v = 0;

const int ledChannel_1 = 1;

const int ledChannel_2 = 2;

void IRAM_ATTR isr() { // the function to be called when interrupt is

triggered

buttonPressed = true;

}

void IRAM_ATTR onTime0(){

portENTER_CRITICAL_ISR(&timerMux0);

DebouncingFlag = false;

//interruptCount = true; // func being called at interrupt

portEXIT_CRITICAL_ISR(&timerMux0);

timerStop(timer0);

buttonPressed = false;

}

void setup() {

// put your setup code here, to run once:

Serial.begin(115200);

pinMode(BTN, INPUT); // configures the specified pin to

behave either as an input or an output

attachInterrupt(BTN, isr, RISING); // set the "BTN" pin as the

interrupt pin; call function named "isr" when the interrupt is triggered;

"Rising" means triggering interrupt when the pin goes from LOW to HIGH

timer0 = timerBegin(100000); // frequency = 1Mhz

timerAttachInterrupt(timer0, &onTime0);

timerAlarm(timer0,25000, true, 0);

pinMode(POT, INPUT);

ESP32Encoder::useInternalWeakPullResistors = puType::up; // Enable the

weak pull up resistors

encoder.attachHalfQuad(27, 33); // Attache

pins for use as encoder pins

encoder.setCount(0); // set

starting count value after attaching

// configure PWM functionalitites with attaching the channel to the GPIO

to be controller

ledcAttach(BIN_1, freq, resolution);

ledcAttach(BIN_2, freq, resolution);

pinMode(BIN_3, OUTPUT);

digitalWrite(BIN_3, LOW);

}

void loop() {

// put your main code here, to run repeatedly:

theta += -counter;

potReading = analogRead(POT);

thetaDes = map(potReading, 0, 4095, 0, thetaMax)*(30/1.75); //scaled for

gear ratio

err = thetaDes-theta;

err_sum = err_sum + (err / 10);

if(err_sum > IMax){

err_sum = IMax;

}

D = Kp * err + Ki*err_sum;

//Ensure that you don't go past the maximum possible command

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

err_sum = err_sum - (err / 10);

} else if (D < -MAX_PWM_VOLTAGE) {

D = -MAX_PWM_VOLTAGE;

err_sum = err_sum - (err / 10);

}

if (D > 0) {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, D);

} else if (D < 0) {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, -D);

} else {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, LOW);

}

//plotControlData();

Serial.println("Bed Rotating");

delay(100);

switch (state) {

case 0 : // OFF

delay(1000); //1 sec of blocking code

Serial.println("Slow down buddy!");

state = 1;

break;

case 1 : // ON

if(CheckForPress()){

ButtonResponse();

//Serial.println("Arm Extended & Electromagnet Engaged!");

state = 0;

}

break;

default: //Err

Serial.println("SM_ERROR");

break;

}

}

bool CheckForPress(){

if(buttonPressed == true && DebouncingFlag == false){

portENTER_CRITICAL_ISR(&timerMux0);

DebouncingFlag = true;

portEXIT_CRITICAL_ISR(&timerMux0);

timerStart(timer0);

return true;

}

else {

return false;

}

}

void ButtonResponse(){

buttonPressed = false;

Serial.println("Arm Extended & Electromagnet Engaged!");

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, 150);

ledcWrite(BIN_3, HIGH);

delay(600);

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, 150);

ledcWrite(BIN_3, HIGH);

delay(600);

ledcWrite(BIN_2, 0);

ledcWrite(BIN_1, 0);

ledcWrite(BIN_3, LOW);

}

