
Autonomous French Press: ‘Brewt Force’
Jacob Kuczynski, Jacob Lopez, Eduardo Diaz

O P P O R T U N I T Y

Our goal through this project was to automate a home activity in order to make people’s lives easier. A
french press is a simple appliance that is easy to operate, however it takes time to use, and can be
imprecise depending on the operator. This is especially true since you need to wait 5 minutes between
adding hot water and pressing the plunger. Therefore, we built an automated french press with the goal of
making the coffee making process more consistent and convenient. In addition, utilizing a french press
may prove difficult for some users with disabilities. For added accessibility, we designed the french press
to be simplistic and require minimal input from the user to operate.

H I G H L E V E L S T R A T E G Y

Our final design of the project uses a rack and pinion system driven by a brushed DC motor in order to
press the plunger rod down. We retrofitted the plunger rod so that it is connected to the gear rack and
designed a custom lid to hold the transmission system and electronics. In order to operate the machine, the
process is as follows:

1. The system first begins in the IDLE state in which all processes are currently waiting. Once the
user would like to begin the coffee-making process, they would indicate beginning through the
use of a button.

2. The system then enters the MOVING state in which through open-loop control, the transmission
line continuously actuates the movement of the plunger upwards. While still in this state of
movement, the user would press a limit-switch button, indicating they would like to input the
boiling water and coffee grounds.

3. The system then enters the WAIT state in which the coffee grounds and boiling water would be
added. This is also the time for the user to stir the grounds for proper mixture. The user would
have specified how long they would like their coffee to sit prior to beginning the entire process.

4. Finally, the system enters the DOWN state in which the transmission line actuates the plunger
downwards. During this state, the controller is continuously detecting any sort of change in the
load cell. When it does, the system then returns to IDLE state.

5. At this point, the coffee is ready to be served!

This differs from our original design which used two motors, one on each side of the plunger that drove
rubber wheels to move the plunger rod via friction. We changed this design after the machine shop staff
voiced concerns that there may not be enough friction between wheels and the plunger rod. Our original
design also included a thermocouple and water heater feedback loop that maintains the water temperature,
however due to time constraints, we focused on the main functionality of the pressing motion of the press.
Given time and adequate resources, the aforementioned would be implemented. In addition, the load cell
would be faceted in the proper location, at the bottom of the pot, detecting a change in weight through a
proper cantilever setup. As it stands, the current model improperly pushes on the middle of the load cell.

1

Figure 1: High-Level Electronic Overview
(White line describes the 1 D.O.F. motion)

Figure 2: Top-Down Overview of Transmission
Line, Buttons, and Housing.

D E S I G N D E C I S I O N S

One of the first concerns when designing and selecting components was the required force it takes to
actuate the plunger/rack itself. For calculating the torque, we neglect the friction force between the disk &
pot as its minimal. For calculating the required torque:

where the calculated force is simply the weight of the rod:𝑇
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

= 𝐹 * 𝑟 * 𝑠𝑖𝑛θ = 4. 064 𝑘𝑔
𝑐𝑚

. Radius of the gear rack is : . Angle of𝐹 = 3. 2 𝑘𝑔𝑓 𝑟 = 0. 5 𝑖𝑛. 𝑜𝑟 1. 27𝑐𝑚 θ = 90°

As the Pololu 37D Metal Gearmotor has a maximum operating torque of , we were fine when it8. 4 𝑘𝑔
𝑐𝑚

came to producing enough torque for actuation. As for the safety factor, we calculated a value of 2.07,
ensuring proper safety of handling our equipment:

where ,𝐹𝑂𝑆 =
𝑇

𝑚𝑜𝑡𝑜𝑟

𝑇
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

= 2. 07 𝑇
𝑚𝑜𝑡𝑜𝑟

= 8. 4 𝑘𝑔
𝑐𝑚 𝑇

𝑚𝑜𝑡𝑜𝑟
= 4. 064 𝑘𝑔

𝑐𝑚

Finally, we wanted to ensure that the bearing load rating for commonly used bearings (including the ones
utilized within our product) did not exceed the minimum of (in the case there was ever a load500 𝑙𝑏
applied to the bearing itself):

2

where ,𝐿
𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔

> 𝐿
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

= 500 𝑙𝑏 > 7. 05 𝑙𝑏 𝐿
𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑛𝑔

= 500 𝑙𝑏

𝐿
𝑎𝑝𝑝𝑙𝑖𝑒𝑑

= 3. 2 𝑘𝑔 * 2. 204 𝑙𝑏
𝑘𝑔 = 7. 05 𝑙𝑏

In addition, to protect the motor from supporting any kind of radial load, a flexible shaft coupling was
incorporated into the transmission system. We also inserted belleville washers and shims between the
gear, bearings, and collar to protect from friction between these components. The transmission housing is
made from L brackets and is attached to the custom lid with screws.

C I R C U I T D I A G R A M / S T A T E T R A N S I T I O N D I A G R A M

Figure 3: Circuit Diagram

Figure 4: State Transition Diagram (highlighting the 4
states of the machine. Starting in the “IDLE” state, the
states flow clockwise, first into the “UP” state, then to
the “WAIT” state, then to the “DOWN” state, and

finally back to the “IDLE” state.)

R E F L E C T I O N

Our group learned several lessons throughout the process of designing and building this project related to
what went well and what we wish we’d done differently. First, we would have implemented the load call
at the bottom of the pot, properly using it. Also, we realized how crucial it is to fully constrain the moving
parts of the machine. At first, we didn’t have the gear rack supported in the back and on the sides so we
decided to add the 3D printed roller. However, we didn’t make the wheel adjustable leading to the system
having some wiggle room. On the other hand, some things that went well include having clean wiring, a
robust transmission system, and well written code. This was done through team collaboration, allowing
each of us to play to our strengths and contribute in ways that add the most value to the final product.

3

A P P E N D I X A : B I L L O F M A T E R I A L S

Description Part Number Unit Price Quantity Tax Total Price

Stainless Steel French Press $24.99 1 $2.56 $27.55

Inch Rectangular Gear Rack 5174T1 $30.31 1 $3.11 $33.42

Inch Gear 5172T12 $35.24 1 $3.61 $38.85

Cold Rolled Aluminum Sheet
8"x8"x1/4"

9246K11 $21.43 1 $2.20 $23.63

Aluminum Rod 8974K22 $1.51 1 $0.15 $1.66

Rotary Shaft 0.5" 1346K17 $10.81 1 $1.11 $11.92

Shaft Collars 2 Pack For 0.5"
Shaft

6436K14 $6.22 2 $1.28 $13.72

Shielded Ball Bearings 60355K291 $8.04 2 $1.65 $17.73

Shims 0.5" 5 pack 97022A132 $6.97 1 $0.71 $7.68

Belleville Washers 12 pack for 0.5"
Shaft

9712K74 $10.70 1 $1.10 $11.80

Aluminum 90 Degree Angle 1'x2"
3/8" thick

8982K38 $20.80 1 $2.13 $22.93

Flexible Shaft Coupling $14.99 1 $1.54 $16.53

6-32 Stainless Steel Screws 5/8"
(100 pack)

92196A150 $8.83 1 $0.91 $9.74

6-32 Stainless Steel Nuts (100
pack)

91841A007 $4.33 1 $0.44 $4.77

37D Metal Gearmotor 4752 $0.00 1 $0.00 $0.00

Polou Stamped Aluminum
L-Bracket

1084 $0.00 1 $0.00 $0.00

Load Cell $0.00 1 $0.00 $0.00

ESP32 Feather V2 5400 $0.00 1 $0.00 $0.00

Total: $241.92

4

A P P E N D I X B : C A D

Isometric View

Top View

5

Side View

6

A P P E N D I X C: C O D E - A N N O T A T E D

7

8

Code w/ Annotations

9

A P P E N D I X D: C O D E - U N A N N O T A T E D

For the following code, we added feedback control which is not depicted in the above screenshots (did not
affect the state transition diagram or functionality):

#include <Arduino.h>

#include <ESP32Encoder.h>

#include "HX711.h" //This library can be obtained here
http://librarymanager/All#Avia_HX711

#define ENC_1 27 // Motor OUT A

#define ENC_2 33 // Motor OUT B

#define BTN 14 // For the button

#define BTN2 15 // For the limit switch (currently a button, but changing when it
comes in)

#define BIN_1 25 // Motor Driver (Purple line) Bin 1

#define BIN_2 26 // Motor Driver (Orange line) Bin 2

#define LOADCELL_DOUT_PIN 12 // Load Cell DT (Orange Line)

#define LOADCELL_SCK_PIN 13 // Load Cell SCK (Purple Line)

HX711 scale;

enum states {IDLE, UP, WAIT, DOWN};

enum states state = IDLE; // The first state

enum states previousState = (states) - 1;

// Debouncing booleans for main button

volatile bool buttonFlag = false;

volatile bool debouncingFlag = false;

bool isButtonOn = false;

// Debouncing variables for the limit switch

volatile bool limitSwitchFlag = false;

volatile bool limitDebouncingFlag = false;

bool isLimitSwitchOn = false;

// Variable for motor control

const int freq = 5000;

const int resolution = 8;

10

const int MAX_PWM_VOLTAGE = 1000;

const int NOM_PWM_VOLTAGE = 150;

// motor feedback timer

hw_timer_t* feedback_timer = NULL;

portMUX_TYPE timerMux2 = portMUX_INITIALIZER_UNLOCKED;

volatile bool feedback_timer_fired = false;

int timer_frequency = 1000000; // 1Mhz

// Load cell timer

hw_timer_t* load_cell_timer = NULL;

portMUX_TYPE timerMux3 = portMUX_INITIALIZER_UNLOCKED;

volatile bool load_cell_timer_fired = false;

// motor encoder

ESP32Encoder encoder;

int omegaSpeed = 0;

int omegaDes = 0;

int D = 0;

int Kp = 20;

int Ki = 3;

int IMax = 0;

int sum_err = 0;

int max_sum = 300;

volatile int count = 0;

// WAIT start time

unsigned long waitStartTime = 0;

unsigned long waitTime = 5000; // 5 seconds

// Load cell variables

float initialLoadCellValue = 0.0;

float loadCellThreshold = 1.0; // We need to adjust this based on the sensitivity

// Create the timer for button debouncing

hw_timer_t * timer0 = NULL;

11

portMUX_TYPE timerMux0 = portMUX_INITIALIZER_UNLOCKED;

// Create the timer for limit switch debouncing

hw_timer_t * timer1 = NULL;

portMUX_TYPE timerMux1 = portMUX_INITIALIZER_UNLOCKED;

// ISR for main button press

void IRAM_ATTR isr() {

buttonFlag = true;

}

// ISR for limit switch press

void IRAM_ATTR limitSwitchISR() {

limitSwitchFlag = true;

}

// ISR for timer (debouncing) for main button

void IRAM_ATTR onTime0() {

portENTER_CRITICAL_ISR(&timerMux0);

debouncingFlag = false;

portEXIT_CRITICAL_ISR(&timerMux0);

timerStop(timer0);

buttonFlag = false;

}

// ISR for timer (debouncing) for limit switch

void IRAM_ATTR onTime1() {

portENTER_CRITICAL_ISR(&timerMux1);

limitDebouncingFlag = false;

portEXIT_CRITICAL_ISR(&timerMux1);

timerStop(timer1);

limitSwitchFlag = false;

}

void IRAM_ATTR feedback_timer_isr() {

portENTER_CRITICAL_ISR(&timerMux2);

12

count = encoder.getCount();

encoder.clearCount();

feedback_timer_fired = true;

portEXIT_CRITICAL_ISR(&timerMux2);

}

void IRAM_ATTR load_cell_timer_isr() {

load_cell_timer_fired = true;

}

void setup() {

Serial.begin(115200); // Baud rate

pinMode(BTN, INPUT); // Set the BTN as the input (main button)

attachInterrupt(BTN, isr, RISING); // Now triggers interupt when you click

pinMode(BTN2, INPUT); // Limit switch

attachInterrupt(BTN2, limitSwitchISR, RISING); // Now triggers interupt when you
click

// Timer setup for button debouncing

timer0 = timerBegin(1000000); // 1 MHz

timerAttachInterrupt(timer0, &onTime0); // Connects timer to interrupt

timerAlarm(timer0, 50000, true, 0); // Sets how long the timer runs for

timerStop(timer0); // We just made sure the timer is properly on

// Timer setup for limit switch debouncing

timer1 = timerBegin(1000000); // 1 MHz

timerAttachInterrupt(timer1, &onTime1); // Connects timer to interrupt

timerAlarm(timer1, 50000, true, 0); // Sets how long the timer runs for

timerStop(timer1); // We just made sure the timer is properly on

// Initialize the encoders

ESP32Encoder::useInternalWeakPullResistors = puType::up;

encoder.attachHalfQuad(ENC_1, ENC_2);

encoder.setCount(0);

13

// initialize motor feedback timer

feedback_timer = timerBegin(timer_frequency); // Set timer frequency to 1Mhz

timerAttachInterrupt(feedback_timer, &feedback_timer_isr);

timerAlarm(feedback_timer, 10000, true, 0); // 10000 * 1 us = 10 ms, autoreload
true

// initialize load cell timer

load_cell_timer = timerBegin(timer_frequency); // Set timer frequency to 1Mhz

timerAttachInterrupt(load_cell_timer, &load_cell_timer_isr);

timerAlarm(load_cell_timer, 1000000, true, 0);

// Attach the motor drivers

ledcAttach(BIN_1, freq, resolution);

ledcAttach(BIN_2, freq, resolution);

// Initialize the loac cell

scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);

scale.set_scale(-7050.0); // Set the calibration factor

scale.tare(); // Resets the scale to 0

initialLoadCellValue = scale.get_units(1); // Used for the actual function

Serial.println("Setup complete, current state: IDLE");

}

void loop() {

if (state != previousState) {

Serial.print("Entered ");

switch (state) {

case IDLE:

Serial.println("IDLE");

break;

case UP:

Serial.println("UP");

break;

case WAIT:

Serial.println("WAIT");

break;

14

case DOWN:

Serial.println("DOWN");

break;

}

previousState = state; // Update previous state

}

switch (state) {

case IDLE:

MotorStop(); // Continuously runs (not a service function)

if (CheckForButtonPress()) { // EVENT CHECKER: Check that the button has actually
been pressed

if (!isButtonOn) { // Checks that isButtonOn is false (off) but we pressed it
(here for the debouncing)

ButtonResponse(); // SERVICE FUNCTION: Actually perform what happens when the
button is pressed

}

isButtonOn = !isButtonOn; // Changed the flag to say that its on

}

break;

case UP: // Motor is continuously moving up!

MotorUp(); // Continuously runs (not a service function)

if (CheckForLimitSwitchPress()) { // EVENT CHECKER: Checks for the limit switch

if (!isLimitSwitchOn) { // Checks that isLimitSwitchOn is false (off) but we
pressed it (here for the debouncing)

LimitSwitchResponse(); // SERVICE FUNCTION: Actually performs what happens
when the limit switch is activated

}

isLimitSwitchOn = !isLimitSwitchOn; // Changed the flag to say its on

}

break;

case WAIT:

MotorStop(); // Continuously runs (not a service function)

if (CheckForWaitTime()) { // EVENT CHECKER: Check if the designated number of
seconds have passed

WaitResponse(); // SERVICE FUNCTION: Transition to the next state in this
response

15

}

break;

case DOWN:

MotorDown(); // Continuously runs (not a service function)

if (load_cell_timer_fired) {

load_cell_timer_fired = false;

if (CheckForLoadCellChange()) { // EVENT CHECKER: Check if there has been an
actual change

LoadCellResponse(); // SERVICE FUNCTION: Transitions the state to IDLE

}

}

break;

}

}

bool CheckForButtonPress() {

if (buttonFlag && !debouncingFlag) { // If button is pushed AND we have yet to
debounce

portENTER_CRITICAL(&timerMux0); // Prep the timer?

debouncingFlag = true; // Say we are debouncing

portEXIT_CRITICAL(&timerMux0); // Prep the timer?

timerStart(timer0); // Start the timer

return true; // Say the button has been pressed

}

return false;

}

bool CheckForLimitSwitchPress() {

if (limitSwitchFlag && !limitDebouncingFlag) { // If limit switch is pressed and not
debouncing

portENTER_CRITICAL(&timerMux1);

limitDebouncingFlag = true; // Say we are debouncing

portEXIT_CRITICAL(&timerMux1);

timerStart(timer1); // Start debounce timer for limit switch

return true;

16

}

return false;

}

bool CheckForWaitTime() {

unsigned long currentTime = millis();

if (currentTime - waitStartTime >= waitTime) {

return true;

}

return false;

}

bool CheckForLoadCellChange() {

if (load_cell_timer_fired != 0) {

load_cell_timer_fired = false;

float currentLoadCellValue = scale.get_units(1); // The current value we read

float difference = abs(currentLoadCellValue - initialLoadCellValue);

Serial.print("Load Cell Reading: ");

Serial.println(currentLoadCellValue);

if (difference >= loadCellThreshold) { // Remember we set the original threshold
above

return true;

}

return false;

}

}

void ButtonResponse() { // What happens when we actually press the button

Serial.println("Button Pressed! Moving to 'UP' state.");

state = UP;

sum_err = 0;

}

void LimitSwitchResponse() {

Serial.println("Limit switch activated! Moving to 'WAIT' state.");

17

waitStartTime = millis(); // Record the time when entering WAIT state

state = WAIT; // Transition to WAIT state

}

void WaitResponse() {

Serial.println("Wait time over. Moving to 'DOWN' state.");

state = DOWN;

sum_err = 0;

initialLoadCellValue = scale.get_units(1);

}

void LoadCellResponse() {

Serial.println("Load cell change detected! Moving to 'IDLE' state.");

state = IDLE; // Transition back to IDLE state

}

void MotorUp() {

omegaDes = 2;

if (feedback_timer_fired) {

portENTER_CRITICAL_ISR(&timerMux2);

feedback_timer_fired = false;

portEXIT_CRITICAL_ISR(&timerMux2);

motor_feedback();

}

}

void MotorStop() {

ledcWrite(BIN_1, LOW); // Sets the speed

ledcWrite(BIN_2, LOW); // Initializes the 2nd bin to LOW

}

void MotorDown() {

omegaDes = -2;

if (feedback_timer_fired) {

portENTER_CRITICAL_ISR(&timerMux2);

feedback_timer_fired = false;

18

portEXIT_CRITICAL_ISR(&timerMux2);

motor_feedback();

}

}

void motor_feedback() {

omegaSpeed = count;

int err = omegaDes-count;

sum_err += err;

if (sum_err > max_sum){

sum_err = max_sum;

}else if (sum_err < -max_sum){

sum_err = -max_sum;

}

D = Kp*err + Ki*sum_err;

if (D > MAX_PWM_VOLTAGE) {

D = MAX_PWM_VOLTAGE;

} else if (D < -MAX_PWM_VOLTAGE) {

D = -MAX_PWM_VOLTAGE;

}

if (D > 0) {

ledcWrite(BIN_1, LOW);

ledcWrite(BIN_2, D);

} else if (D < 0) {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, -D);

} else {

ledcWrite(BIN_2, LOW);

ledcWrite(BIN_1, LOW);

}

// Serial.println(D);

}

19

