Tea

Dispensers S\~

Tea guide

Brewing
chamber

TeaMaker
ME 102B Group 7: Harrison Lee, Franklin Ho, Alahe Akhavan, David Lu

Opportunity:
Many people choose to drink tea instead of coffee in the morning. We would like to make an automated

tea maker for Chinese Tea, which calls for different water temperatures, volumes and brewing times for
each unique type of tea. Users will also be able to produce tea straight from the tea leaves without needing
to buy expensive pods (eg. Nespresso) found in conventional coffee machines. Similar solutions online
include a Keurig (automated coffee maker), fast-food soda dispensers (dispenser mechanism), Ember mug
(temperature control of a coffee mug).

High I evel Strategy:

Our traditional tea making system includes 5 subsystems - lection usin h screen ispensin
with DC motor, load cell, water heating. and water pump. Every subsystem is controlled via one main
ESP32 microcontroller. To use this device, the user first selects between the two tea options via touch
screen. Options available on the touch screen include 1) green tea, 2) black tea, 3) refill with water, and 4)
reset. After having selected the tea option, the tea box dispenses tea using the transmission system, the
auger. While the tea is being dispensed in the brewing chamber, the load cell actively measures the
weights of the tea leaves and gives feedback to the transmission system to stop once the goal weight of the
brewing chamber is reached. Then the thermometer reads the temperature of the water, such that the
heating element is not exceeding the goal temperature. Once the water temperature is at the desired
temperature (80-90C depending on tea type), and the tea is in the brewing chamber, the pump begins
deposing the hot water in the brewing chamber. Tea is served after the wait time for brewing is completed.
Initially, in addition to the final design, our goal was to have 4 tea selection types, with a reservoir of cold
water fed into a smaller hot water reservoir for our water heater design. Given financial and time
constraints, we decided to move forward with two tea dispensing boxes and adjust to a smaller, singular
water tank. This did not limit our final prototype. A concern of ours was food safety. We addressed this
by using food safe material for the systems which contacted hot water, such as using a commercial grade
tea brewing chamber and pump. We were able to successfully achieve what we set out to initially in terms
of device functionality, mechanical stability, and safety.

Integrated Physical Device:

Load cell
Electrical Box Electric

Screen

Heating

Critical Desien Di ions/Calculations:

Our selected motor was a 210:1 6V Pololu Brushed DC Motor, with a maximum stall torque of 3.0kg-cm.
We calculated the expected torque by manufacturing a first prototype of our auger with a handle of length
Scm that we could turn manually. We filled the box with tea leaves and used a spring force sensor to
determine the force on the Scm-long handle required to produce enough torque to rotate the auger full of
leaves. We picked this motor with a safety factor of 3.53 to give us an optimal balance between required
torque and actuation speed (rpms). This safety factor was crucial as it later turned out that leaves would
get stuck in the auger over time, requiring a greater than expected torque. Our transmission experienced
very small axial forces. To calculate the maximum transmission force from a full box of leaves, we
calculated the highest mass flow rate (g/s) of leaves, multiplied by its horizontal velocity in the auger
(cm/s) to determine axial force.

Required torque = Scm * IN = 5N-cm = 0.51kg - cm
Safety factor = 3/0.51 * 60% (safety factor for sustained max torque) = 3.53

Axial force on transmission system:
= Rate of change of momentum of tea leaves

= 100g*8cm/s per second = 800g - cm/s*2 = 0.008kg - m/s*2= 0.008N

State Transition Diagrams:

Temperature

EEd -
Green dotted arrows: reached target

Reset button . .
Timer2 expires /

notify user

\

Initialization
6: Tea Done!

User selects tea
(electronic display) /
Start augers

Timer1 expires /
start timer2

Check temperature,
Maintain temperature

2: Dispensing
Tea

5: Brewing User selects refill /

Tea Start water pump

Tea mass reaches target mass /
Stop augers, start water pump

4: Dispensing

Water mass reaches target mass/ Water

Stop water pump, start timer1

Circuit Di :

Load Cell

Pump

120V Supply

Resistive Heating Element

5V Supply

Thermocouple

Tea Leaf Motor Tea Leaf Motor

Display

Final Thoughts/Reflection:
From the beginning of the semester, all our team members were dedicated and set on creating a well

functioning device, this included good communication, well established roles, and always being present
for the weekly meetings. We all were clear on our individual areas of strength and weaknesses, and how
to set realistic individual and team goals in which we could achieve by the end of the semester. Some
good takeaways for future students - make weekly check-ins and make sure to attend every or share
progress, and get as much feedback as you can from the teaching team or staff, this will be crucial for
making a good quality system.

Appendices
Appendix A: Bill of Materials

@ o s w N

~

$ 445.65
ltem Name Description Price (ea.) Quantity Vendor Subtotal
Set Screw Shaft Collar for 3/8" Diameter, 6061 Al Shaft Collar $ 4.73 4| Mcmaster $ 28.38
Food Industry Dry-Running Sleeve Bearing, UHM Bearings $ 6.17 4| Mcmaster $ 37.02
316 Stainless Steel Ring Shim, 0.01" Thick, 3/8" | Shims $ 4,92 1|Mcmaster $ 4.92
Flexible Shaft Coupling Iron Hub with Set Screw, Flexible Shaft Coupler (motor end) | $ 8.83 2| Mcmaster $ 17.66
Flexible Shaft Coupling Iron Hub with Set Screw, Flexible Shaft Coupler (shaftend) | $ 8.83 2| Mcmaster $ 17.66
18000 rpm Buna-N Rubber Spider for 1-5/64" OD Flexible Shaft Coupler Connector | $ 5.69 2| Mcmaster $ 11.38
Sales Tax and Shipping Mcmaster (receipt 1) Tax and Shipping fees $ 23.06 1|Mcmaster $ 23.06
31000 rpm Buna-N Rubber Spider for 5/8" OD Fle Flexible Shaft Coupler Connector | $ 4.08 3| Mcmaster $ 12.24
Wear- and Chemical-Resistant PEEK Tube, 1/16" Food safe tube $ 12.64 1[Mcmaster $ 12.64
Flexible Shaft Coupling Iron Hub with Set Screw, Flexible Shaft Coupler (motor end) | $ 8.83 1|Mcmaster $ 8.83
Flexible Shaft Coupling Iron Hub with Set Screw, Flexible Shaft Coupler (shaftend) | $ 8.83 1|Mcmaster $ 8.83
Sales Tax and Shipping Mcmaster (receipt 2) Tax and Shipping fees $ 14.40 1|Mcmaster $ 14.40
Plywood - 1/4" x 18" x 30" 1/4 inch thick plywood sheets $ 10.70 1| Jacobs Hall $ 10.70
Plywood - 1/4" x 18" x 30" 1/4 inch thick plywood sheets $ 10.70 1|Jacobs Hall $ 10.70
DS18B20 Temperature Sensor for Arduino, ESP3 Temperature sensor for ESP32 $ 92.99 1|Amazon $ 9.99
Norpro Instant Immersion Heater Coffee/Tea/Sou Electric Heating Element (300W) $ 13.58 1[Amazon $ 13.58
Nazo Green Tea Tea $ 5.99 1[store $ 5.99
Ahmed Black tea tea $ 10.99 1| Amazon $ 10.99
M3 Screws and Nuts 1 pack of 440 pcs, M3 screws $ 9.99 1|Amazon $ 11.00
Stepper motor 12V geared NEMA 17 Stepper moto| $ 37.00 1[Amazon $ 40.83
(560 Pcs) MCIGICM Breadboard Jumper Wire Cz Jumper Wire Cables $ 9.99 1|Amazon $ 9.99
Arduino UNO R4 Minima [ABX00080] - Renesas | Microcontroller $ 18.00 1|Amazon $ 18.00
uxcell Round Aluminum Standoff Column Spacer Standoffs $ 12.89 1|Amazon $ 12.89
ShangHdJ 2 Sets Digital Load Cell Weight Sensor Loadcell $ 9.99 1[Amazon $ 9.99
Ultimate Ceramic Glue, Proper for Ceramic & Por Adhesives $ 6.99 1{Amazon $ 6.99
MCP23017 - i2c 16 input/output port expander 10 Expander for ESP32 $ 10.29 2| Amazon $ 20.58
DIYables 3pcs Relay Module for Arduino, ESP32, Relay $ 8.99 1[Amazon $ 8.99
Amazon Basics Folding Hex Key Set - 3-Pack, M Hex Wrench needed for Assembly | $ 12.43 1[Amazon $ 12.43
AITRIP 2 Pack ESP32 Development Board ESP3 Touchscreen display $ 34.99 1[Amazon $ 34.99

Appendix B: CAD
Tea Box with Auger and DC Motor:

Closer examination of the table structure, with ramps, interfaces with legs, and holes for tea:

Water heater subsystem with mounts for resistive heating element, thermometer and pump:

P6_newPins.ino

1

#define UPIN 12

#define BIN_3 27
#define BIN_4 33
#define BIN_1 25
#define BIN_2 26

#define ONE_WIRE_BUS 5
#define PUMP 19
#define HEATER 21

LOADCELL_DOUT_PIN = 32;
LOADCELL_SCK_PIN = 14;
#include <ESP32Encoder.h>
#include "HX711.h"
ESP32Encoder encoderl;
ESP32Encoder encoder2;
HX711 scale;
#include <OneWire.h>
#include <DallasTemperature.h>
#define TXD1 8
#define RXD1 7
motorl = 99;
motor2 = 99;

OneWire oneWire(ONE_WIRE_BUS);
DallasTemperature sensors(&oneWire);
temp = 0.0;

brewTime = 17;
dispenseTime = 10;
waterHI = 85;

waterLO0 = waterHI - 1;
teaMassTarget = 2;
waterMassTarget = 50;
cups0fTea = 1;

byte state = 3;
brewedTeaFlag = false;
teaDoneComplete = false;

omegaSpeed =
omegaDes = 0;
omegaMax = 20;
D = 0;

dir = 1;
potReading = 0;
Kp = 10;

Ki = 5;

0;

error_sum = 0;

freq = 5000;
ledChannel_1 1;
ledChannel_2 = 2;
resolution = 8;
MAX_PWM_VOLTAGE
NOM_PWM_VOLTAGE
count = 0;
countl = 0;
count2 = 0;
deltaT = false;
* timer® = NULL;
* timerl = NULL;
* timer2 = NULL;
* timer3 = NULL;
portMUX_TYPE timerMux® = portMUX_INITIALIZER UNLOCKED;
portMUX_TYPE timerMuxl = portMUX_INITIALIZER_UNLOCKED;
portMUX_TYPE timerMux2 = portMUX_INITIALIZER_UNLOCKED;
portMUX_TYPE timerMux3 = portMUX_INITIALIZER_UNLOCKED;
HardwareSerial mySerial(2);
button = 10;

IRAM_ATTR onTimel() {

portENTER_CRITICAL_ISR(&timerMuxl);
countl = encoderl.getCount();
encoderl.clearCount();

count2 = encoder2.getCount();
encoder2.clearCount();

deltaT = true;
portEXIT_CRITICAL_ISR(&timerMuxl);

IRAM_ATTR onTime2{) {
portENTER_CRITICAL_ISR(&timerMux2);
brewedTeaFlag = true;
portEXIT_CRITICAL_ISR(&timerMux2);
timerStop(timer2);

IRAM_ATTR onTime3() {
portENTER_CRITICAL_ISR(&timerMux3);
teaDoneComplete = true;
portEXIT_CRITICAL_ISR(&timerMux2);
timerStop(timer3);

setup() {
Serial.begin(115200);
mySerial.begin(9600, SERIAL_8N1, RXD1, TXD1);
Serial.println("ESP32 UART Receiver");
ESP32Encoder: :useInternalWeakPullResistors = puType::
encoderl.attachHalfQuad(34, 39);
encoder2.attachHalfQuad (36, 4);
encoderl.setCount(0);
encoder2.setCount(0);
ledcAttach(BIN_1, freq, resolution);
ledcAttach(BIN_2, freq, resolution);
ledcAttach(BIN_3, freq, resolution);
ledcAttach(BIN_4, freq, resolution);

pinMode(UPIN, INPUT);
scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK PIN);
pinMode(PUMP, OUTPUT);

pinMode (HEATER, OUTPUT);

sensors.begin();

timerl = timerBegin(1000000);
timerAttachInterrupt{timerl, &onTimel);
timerAlarm(timerl, 10000, true, 0);

timer2 = timerBegin(1000000);
timerAttachInterrupt(timer2, &onTime2);
timerAlarm(timer2, 1000000xbrewTime, true, 0);

timer3 = timerBegin(1000000);
timerAttachInterrupt{timer3, &onTime3);
timerAlarm(timer3, 1000000*dispenseTime, true, 0);

loop() {
switch (state) {

case 1:
Serial.println("state 1: idling");
CheckForButtonPress();
tareScale();
checkScale();
keepHeat ();

if (button == 1) {
Serial.println("button press tea 1");
motorl = BIN_1;
motor2 = BIN_2;
state = 2;

else if (button == 2) {
Serial.println("button press tea 2");
motorl = BIN_3;
motor2 = BIN_4;
state = 2;

}

break;

case 2:
Serial.println("state 2: dispensing leaves");

CheckForButtonPress{();
startAuger(motorl, motor2, button);

if (teaMassChecker()) {
stopAuger();
state = 4;
tareScale();

b

break;

case 3:
Serial.println("state 3: pre-heating water");
CheckForButtonPress();
if (preHeat()) {
state=1;
H

break;

(of: Yl H

Serial.println{"state 4: dispensing water");
stopAuger();

CheckForButtonPress();

button = 10;

startWater();

if (waterMassChecker()) {
stopWater();
state = 5;
timerWrite(timer2, 0);
timerStart(timer2);

b

break;

case 5:
Serial.println("state 5: brewing tea");
CheckForButtonPress();
keepHeat();

if (brewedTeaFlag) {
brewedTeaFlag = false;
state = 6;
timerWrite{(timer3, 0);
timerStart{timer3);

break:;

case 6:
Serial.println("state 6: Tea done!!!");

if (teaDoneComplete) {
teaDoneComplete = false;
state = 1;

}

break;

default:
Serial.println("SM ERROR");
break;

startAuger(motorl, motor2, button) {

if (deltaT) {
portENTER_CRITICAL (&timerMuxl);
deltaT = false;
portEXIT_CRITICAL(&timerMuxl);

if (button==1) {
omegaSpeed = countl;
else if (button ==2) {
omegaSpeed = count2;
else {omegaSpeed=0;}

omegaDes = 8;
error_sum = error_sum + (omegaDes-omegaSpeed)/10;
D = Kp*{omegaDes—omegaSpeed) +Kix(error_sum);

if (D > MAX_PWM_VOLTAGE) {
D = MAX_PWM_VOLTAGE;

error_sum -= (omegaDes-omegaSpeed)/10;
} else if (D < -MAX_PWM_VOLTAGE) {

D = -MAX_PWM_VOLTAGE;

error_sum -= (omegaDes-omegaSpeed)/10;

}

D=125;

if (D > 8) {
ledcWrite(motorl, LOW);
ledcWrite(motor2, D);
else if (D < @) {
ledcWrite(motor2, LOW);
ledcWrite(motorl, -D);
else {
ledcWrite(motor2, LOW);
ledcWrite(motorl, LOW);

b

plotControlData(};

plotControlData{) {
Serial.print("Speed:");
Serial.print(omegaSpeed);
Serial.print(" ");
Serial.print("Desired_Speed:");
Serial.print(omegaDes);
Serial.print(" ");
Serial.print("PwM_Duty/10:");
Serial.println(D / 10);

stopAuger() {

ledcWrite(BIN_2,
ledcWrite(BIN_1,
ledcWrite(BIN_3,
ledcWrite(BIN_4,

startHeater() {
digitalWrite(HEATER, HIGH);

stopHeater() {
digitalWrite(HEATER, LOW);

startWater() {

digitalWrite(PUMP, HIGH);

stopWater() {
digitalWrite(PUMP, LOW);

readTemp() {
sensors. requestTemperatures();
temp = sensors.getTempCByIndex(@);
Serial.print("Temperature: ");
Serial.print(temp);
Serial.print("C | ");
return temp;

checkScale() {

if (scale.is_ready()) {
scale.set_scale();
delay(200);

reading = scale.get_units(10);
Serial.println("Weight:");
Serial.println(reading);
return reading;

tareScale() {
scale.tare();

waterMassChecker() {

if (checkScale() > 20@xwaterMassTarget) {
return true;

}

else {
return false;

teaMassChecker() {
if (checkScale() > 200xteaMassTarget) {
return true;

}
else {
return false;

CheckForButtonPress() {
if (mySerial.available()) {

String message = mySerial.readStringUntil('\n');
Serial.println("Received: " + message);

if (message.toInt() == 1) {
Serial.println("received 1");
button = 1;
return true;

else if (message.toInt() 2) {
Serial.println("received)@
button = 2;

return true;

else if (message.toInt()
Serial.println("reset");
state = 1;

button = 18@;
stopAuger();
stopWater();
timerStop(timer2);
timerStop(timer3);

else if (message.toInt() == 4) {

-~ Y B ETRY

} else if (message.toInt() == 4) {
Serial.println(*skip");
button = 10;
stopAuger();
if (state==6) {

state = 1;
¥
else if (state==3) {
state = 1;
¥
else if (state ==2) {
state =4;
¥
else {
state = state + 1;
}
timerStop(timer2);
timerStop(timer3);

else if (message.toInt() == 3) {
Serial.println("refill");
scale.tare();
state = 4;
button = 10;
stopAuger();
timerStop(timer2);
timerStop(timer3);

else {
return false;

preHeat() {
if (readTemp() < waterHI) {
startHeater():
return false;
} else {
return true;

keepHeat() {

if (readTemp() > waterHI) {
stopHeater();

}

else if (readTemp() < waterLD) {
startHeater();

}

¥

